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Abstract. Plant functional diversity is strongly connected to photosynthetic carbon assimi-
lation in terrestrial ecosystems. However, many of the plant functional traits that regulate pho-
tosynthetic capacity, including foliar nitrogen concentration and leaf mass per area, vary
significantly between and within plant functional types and vertically through forest canopies,
resulting in considerable landscape-scale heterogeneity in three dimensions. Hyperspectral ima-
gery has been used extensively to quantify functional traits across a range of ecosystems but is
generally limited to providing information for top of canopy leaves only. On the other hand,
lidar data can be used to retrieve the vertical structure of forest canopies. Because these data
are rarely collected at the same time, there are unanswered questions about the effect of forest
structure on the three -dimensional spatial patterns of functional traits across ecosystems. In
the United States, the National Ecological Observatory Network’s Airborne Observation Plat-
form (NEON AOP) provides an opportunity to address this structure-function relationship by
collecting lidar and hyperspectral data together across a variety of ecoregions. With a fusion of
hyperspectral and lidar data from the NEON AOP and field-collected foliar trait data, we
assessed the impacts of forest structure on spatial patterns of N. In addition, we examine the
influence of abiotic gradients and management regimes on top-of-canopy percent N and total
canopy N (i.e., the total amount of N [g/m?] within a forest canopy) at a NEON site consisting
of a mosaic of open longleaf pine and dense broadleaf deciduous forests. Our resulting maps
suggest that, in contrast to top of canopy values, total canopy N variation is dampened across
this landscape resulting in relatively homogeneous spatial patterns. At the same time, we found
that leaf functional diversity and canopy structural diversity showed distinct dendritic patterns
related to the spatial distribution of plant functional types.
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growth (Stark et al. 2012), as well as critical ecosystem

INTRODUCTION . . .
processes such as net primary production (Hardiman

The relationship between forest structure and function
is a major focus of ecosystem ecology; however, most
studies have focused on measurements within traditional
forest plots (Ellsworth and Reich 1993, Parker et al.
2004, Fahey et al. 2015, Pedro et al. 2017, Atkins et al.
2018, Gough et al. 2019). These studies have shown that
the integral relationship between structure and function
drives important canopy processes such as net photosyn-
thetic carbon assimilation (Niinemets 2007), resource
use and efficiency (Hardiman et al. 2013), and woody
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et al. 2011, Scheuermann et al. 2018). Since the individ-
ual traits that drive this structure—function relationship
are not constant in space and instead show significant
heterogeneity across landscapes (Chambers et al. 2007,
Asner et al. 2014), a core question in ecosystem ecology
is, do landscape scale patterns of forest functional traits
change when whole plant structure is considered?

In addition to this significant spatial variation, plant
functional and structural traits also vary in three-dimen-
sional space due to a host of different long-term abiotic
growth conditions, crown position within the canopy
and competition for light, as well as within-canopy fluc-
tuating light environments across the full vertical and
horizontal extent of the canopy (the “canopy volume”;
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Ellsworth and Reich 1993). These differing light and
growth environments drive variation of important leaf
functional traits including leaf mass per area (LMA, the
ratio between leaf dry mass and leaf area) and foliar
nitrogen (foliar N; g/mg*; where mg is meter of ground)
within the canopy volume (Niinemets 2007, Poorter
et al. 2009). Moreover, horizontal and vertical patterns
of these traits in growth environments create heteroge-
neous distributions of leaves in three dimensions causing
significant variation in canopy-scale carbon assimilation
across plant functional types (Niinemets et al. 2015).
This variation can be attributed to differing light envi-
ronments related to the effects of multiple scattering,
within-canopy shading, and the density of plant material
above and around a given leaf (Harding et al. 2001,
Stark et al. 2012). Resulting tradeoffs between light
interception, photosynthetic capacity, and construction
costs (e.g., the leaf economics spectrum) lead to broadly
predictable variation in photosynthetic strategies across
the plant species comprising global terrestrial biomes
(Reich et al. 1997, Wright et al. 2004).

At the canopy scale, forest structural traits can be
used to describe the architectural properties that define
a leaf’s growth environment. These traits include leaf
area density (LAD, the total leaf area per unit of vol-
ume), which characterizes the horizontal and vertical
spatial variation of leaf area within a canopy (Weiss
et al. 2004), and canopy clumping (a measure of foliage
aggregation relative to a random spatial distribution of
leaf material within the canopy; Pisek et al. 2018). When
combined with information on plant function, structural
diversity yields important insights into vegetation
growth and carbon cycling (Niinemets 2012); however,
both can be challenging to quantify at scales larger than
vegetation plot without advanced remote sensing tech-
nologies (Asner and Martin 2009).

Remote sensing has played a significant role in under-
standing the global terrestrial carbon cycle for decades
(Tucker and Sellers 1986; Schimel 1995, Running et al.
2004, Schimel et al. 2015), with a more recent focus on
the use of hyperspectral imagery and lidar to measure
forest function and structure. By utilizing hundreds of
narrow spectral bands, airborne passive optical hyper-
spectral imagery (HSI; also known as imaging spec-
troscopy) provides detailed two-dimensional (2D)
information on the spectral and functional properties of
leaves at the top of the canopy (Ollinger et al. 2002,
Townsend et al. 2003, Dahlin et al. 2013, Asner et al.
2015, Singh et al. 2015). Lidar is an active remote sens-
ing system that utilizes laser pulses to measure distance,
which can then be used to accurately estimate the three-
dimensional (3D) and internal structure of forest cano-
pies across a range of plants in different biomes (Stark
et al. 2012, Kamoske et al. 2019, Shao et al. 2019, Smith
et al. 2019). While passive optical data can also be used
to estimate variables related to forest structure, including
clumping index (Pisek et al. 2018) and 3D point clouds
through structure-from-motion methods (Dandois and
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Ellis 2013, Iglhaut et al. 2019), the results are not as
robust as active methods like lidar for generating 3D
plant information. Compared to HSI data, lidar can
yield detailed insights into plant architecture but does
not provide the information necessary to map leaf func-
tional traits across space and time, a combination of
these data sources is required to provide a complete pic-
ture of vegetation structural and functional diversity.
However, few publicly available opportunities and plat-
forms exist for the simultaneous collections of these two
complementary technologies (Kampe et al. 2010, Cook
et al. 2013), limiting our ability to combine landscape-
scale information about forest structural and functional
traits that play critical roles in whole-canopy processes
like carbon assimilation.

In this study, we take steps toward addressing the ques-
tion of how leaf traits and structural heterogeneity deter-
mine whole canopy function by considering how spatial
patterns of top-of-canopy and total canopy traits vary
across a heterogeneous landscape. We detail a repro-
ducible methodology for estimating functional and struc-
tural diversity within the canopy volume from airborne
lidar and hyperspectral data from the National Ecologi-
cal Observatory Network’s Airborne Observation Plat-
form (NEON AOP; Kampe et al. 2010). We compare the
spatial patterns of 3D whole canopy traits derived from
our fusion of lidar and hyperspectral data with tradi-
tional 2D remote sensing-derived top-of-canopy traits.
In addition, we examine the influence of topography,
geology, and management regimes on these two measure-
ments of functional diversity at a NEON site consisting
of patches of open longleaf pine and dense broadleaf
deciduous forests, located in Alabama, USA. These
insights could lead to a better understanding of how we
scale fine-resolution ecological processes to landscape,
continental, and global models (Schimel et al. 2019).

MATERIALS AND METHODS

Site description

Field measurements and remote sensing data were
acquired in Talladega National Forest, Oakmulgee Ran-
ger District (TALL) in west-central Alabama, USA
(Fig. 1). TALL is a core NEON site covering 5,300 ha
with a mean annual temperature of 17°C and a mean
annual precipitation of 1,350 mm. TALL consists of a
mosaic of forest types, with higher elevation areas con-
taining an overstory of longleaf pine (Pinus palustris)
and loblolly pine (Pinus taeda), while white oak (Quercus
alba), Southern red oak (Quercus falcata), chestnut oak
(Quercus montana), blackjack oak (Quercus marilandica),
mockernut hickory (Carya tomentosa), pignut hickory
(Carya glabra), sweetgum (Liquidambar styraciflua), and
tulip tree (Liriodendron tulipifera) are present in lower
elevation bottomlands. TALL is an actively managed
site with ongoing logging, restoration, and prescribed
burning projects (USDA Forest Service 2005).
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FiG. 1. Location of field site. Purple rectangle represents

the extent of the aerial data collection of the National Ecologi-
cal Observatory Network’s Airborne Observation Platform
(NEON AOP). Inset map shows the extent of the larger map
view within the southeastern United States.

Airborne remote sensing data

The NEON AOP collected remotely sensed data from
27 April to 29 April 2018, at TALL. The NEON AOP
employs a full-range hyperspectral sensor (380-
2,500 nm; 5 nm bands), a high-resolution RGB camera,
and a lidar system (Kampe et al. 2010). Flights occurred
at an altitude of 1,000 m, resulting in hyperspectral mea-
surements at a 1-m resolution. The lidar system for this
collection was a Riegl Q780 Laser Measurement Sys-
tem (Riegl laser measurement systems, Horn, Austria)
operated at a scan angle of £18°, and a beam divergence
of 0.8 mRad, resulting in an average point density of
9.48 points/m>.

Field data collection and lab methodologies

In May 2018, shortly after the AOP collection, we col-
lected leaves from throughout the canopy volume, tar-
geting the dominant species at TALL (10 species total;
listed in Site description). Foliar samples were collected
using a Big Shot line launcher (Sherrill Tree, Greensboro,
North Carolina, USA) and a pole pruner, with each
sample’s height estimated using a laser range finder and
meter marks on the set line. We collected sample loca-
tions using a Trimble GEO7x GPS (Trimble, Sunnyvale,
California, USA), which were later differentially cor-
rected with Trimble’s GPS Pathfinder Office software.
As we collected samples from the canopy, they were
wrapped in a damp paper towel, sealed in a plastic bag,
and placed in a cooler with ice packs. In total, we
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collected 156 foliar samples from the canopy dominant
species (Appendix S1: Fig. S1, Table S1). In addition to
leaf samples, we took 120 hemispherical photographs
across the site, following the protocol described in
Kamoske et al. (2019).

Leaf samples were processed the same day in our
mobile laboratory. For each sample (a small branch with
multiple leaves) we took three reflectance measurements
from different leaves with an SVC HR-1024i Spectrora-
diometer with an attached LC-RP-Pro leaf clip foreoptic
(Spectra Vista Corporation, Poughkeepsie, New York,
USA), which collects data from 340 to 2,500 nm with a
bandwidth of approximately 2 nm. Leaves from broad-
leaf samples were placed directly into the leaf clip, while
we created mats from needleleaf samples by laying the
needles vertically next to one another while taping the
ends together. For needleleaf samples, only the needles
and not the taped ends were placed into the leaf clip.
After each sample, the instrument was recalibrated using
a white Spectralon panel. We then collected a minimum
of 500 mg of leaf material from the sample using a pair
of scissors that were sterilized between each sample.
These pieces of leaf material were imaged on a flatbed
scanner and processed for area using ImageJ software
(Schneider et al. 2012). We placed the leaf material in a
paper coin envelope and dried the samples at 70°C for at
least 48 h. After drying, we weighed the leaf samples
and calculated leaf mass per leaf area (LMA; g/m;?
where m; is meter of leaf material). A subset of these
samples (n = 40, ~4 per species) were re-dried, ground to
a fine powder using a ball mill (2000 Geno Grinder; Spex
Sample Prep, Cridersville, Ohio, USA), with 1.50-
2.50 mg weighed in 0.1-mil tin foil vials (AX26DR; Met-
tler Toledo, Columbus, Ohio, USA), and used to deter-
mine the C:N ratio and elemental N content (g N/g leaf,
reported as a percentage) employing a CHNS/O elemen-
tal analyzer operated in CHN mode, according to the
manufacturer’s instructions (2400 Series II CHNS/0
Analyzer; Perkin Elmer, Waltham, Massachusetts, USA)
at Brookhaven National Laboratory (Upton, New York,
USA).

To build a leaf-scale model of percent N to apply to
the remaining samples in lieu of determining foliar N in
the lab, we used the laboratory-calculated percent N val-
ues and the associated mean reflectance values for each
wavelength, to train a partial least-squares regression
model (PLSR; Serbin et al. 2014, Singh et al. 2015). We
withheld 20% of the samples using a weighted random
approach, based on the percent N values, as validation
data (n = 8) that wasn’t used to develop the model and
used the remaining samples (n = 32) as model training
data. Using a jackknife approach that randomly with-
holds 20% of the training data through 50 iterations, we
calculated a PRESS statistic (up to 15 components) for
each iteration. We then selected the number of compo-
nents for our final model using the lowest PRESS statis-
tic that balanced predictive accuracy between the
training and validation data sets. We applied these
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equations to the validation data to assess model accu-
racy. We then applied the final PLSR coefficients to the
reflectance measurements of all 156 leaf samples to
determine PLSR--derived percent N values. We used the
PLSR predicted values in subsequent analysis. This
methodology follows the process and code described in
Serbin et al. (2014), with all analysis performed in R
using the pls package (Mevik and Wehrens 2007).

Lidar methods

Lidar data was processed for LAD (mLz/mG3, where
mg is meter of ground) at a 10 x 10 m spatial resolu-
tion using the canopyLazR package on GitHub
(Kamoske et al. 2019). The canopyLazR package uses
the methods described by MacArthur and Horn (1969)
and is similar to other published methods (Solberg et al.
2006, Sumida et al. 2009, Zhao and Popescu 2009, Stark
et al. 2012). By normalizing the point cloud to height
above ground, LAD is calculated by counting the num-
ber of lidar pulses that enter and exit each voxel in each
vertical column of data that has at least one ground
return. After removing the bottom 10 m of the canopy
due to noise caused by topographic variation (Kamoske
et al. 2019), a stack of rasters containing LAD estimates
for each 1-m slice of the canopy above this threshold is
returned (mean canopy height at TALL is 25 m). LAl is
then calculated by taking the sum of LAD values within
a given column of voxels within the canopy. While the
TALL lidar data set has a considerably higher point den-
sity than the NEON lidar data used in Kamoske et al
(2019), here we elected to keep this relatively conserva-
tive approach to aggregating and filtering these data as
these lidar point clouds were processed as part of a lar-
ger study where we wanted to maintain data uniformity
across sites. Moreover, topographic issues have been
shown to be common when using lidar data for DEM
generation (Bater and Coops 2009), which are further
amplified when using low-density lidar data. To calibrate
the lidar-derived LAI estimates to field-collected data,
we processed field-collected hemispherical photographs
for LAI using the DHP software (Leblanc et al. 2005).
We then calculated the slope of a regression equation be-
tween these measurements and the lidar-derived LAI
estimates (Appendix S1: Fig. S6; Richardson et al. 2009,
Sabol et al. 2014). This slope is used as an extinction
coefficient in the Beer-Lambert portion of the LAD
equation described in Kamoske et al. (2019) and in
Appendix S1: Fig. S6. For TALL, we used an extinction
coefficient of 0.4982. Here we opted to use a single
extinction coefficient for the entire site, rather than sepa-
rate coefficients for broadleaf, needleleaf, and mixed-
species pixels due to difficulties in detecting species dif-
ferences with lidar data.

Based on our previous work in Kamoske et al. (2019),
we then applied a canopy height and LAI mask to each
processed LAD raster to minimize noise in the lidar data
set. Using Tukey’s outlier test (k = 1.5), we removed all
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outliers from the upper end of the data set, which
resulted in all pixels with a canopy height greater than
44 m being removed as well as all pixels with a LAI
value greater than 6 (0.002% of pixels). While a LAI
value of 6 is a statistical output, it is also greater than
our highest field-collected plot-scale LAI value of 4.35.
We also removed all pixels with a LAI value equal to 0.
Using these masked LAD tiles, we calculated 26 lidar--
derived forest structural attributes in raster format at a
10 x 10 m resolution. These include filled canopy vol-
ume, canopy porosity, and canopy distribution metrics
described in Hardiman et al. (2013), top-of-canopy
rugosity, and canopy euphotic, oligophotic, and empty
zone metrics described in Lefsky et al. (1999), canopy
height metrics described in Shi et al. (2018), and within-
canopy rugosity described in Hardiman et al. (2011). All
code to calculate these metrics is provided in the canopy-
LazR package on our GitHub page (see Data Availabil-
ity). An overall diagram of our workflow is shown in
Fig. 2.

Hyperspectral imagery methods

methods

We processed the atmospherically corrected HSI
reflectance data before analysis. First, we removed all
flight lines from 27 April due to cloudiness, as well as
the horizontal (east-west) flight lines from 29 April and
30 April. The remaining north-south flight lines covered
the entire TALL site (29 April and 30 April flights cov-
ered the same area as the 27 April flights). Next, we
visually identified noisy bands in the data set and
removed all bands that were below 500 nm, between
1,350 and 1,450 nm, between 1,800 and 2,000 nm, and
all bands above 2,400 nm. We then calculated a nar-
rowband NDVI mask (red, 674 nm; NIR, 830 nm;
NDVI >0.5) to remove all non-vegetated pixels from
further analysis (Dahlin et al. 2014). We used this rela-
tively high NDVI value of 0.5 in order to leave only
healthy green vegetated pixels during the subsequent
corrections and analysis. We also calculated a bright-
ness mask to remove all shaded pixels using Tukey’s
outlier test (kK = 1.5), where all pixels that have a reflec-
tance below this cutoff at 800 nm are considered out-
liers and removed. This is a modified version of the
methodologies presented by Clark et al. (2005) and
Gougeon (1995), which removes all pixels that are less
than the mean reflectance value at 800 nm. Following
this, we applied a topographic correction to reduce the
effects of terrain, view, and illumination on the reflec-
tance data by normalizing the sunlit area within a pixel
without changing the sun and sensor positions or the
orientation, geometry, and structure of the canopy
while also accounting for diffuse radiation (Soenen
et al. 2005). Last, we applied a bidirectional reflectance
distribution function effects correction (BRDF) with a
thick Ross kernel and a dense Li kernel to remove the
anisotropic scattering properties of vegetation that
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refers to square meters of leaf material, while mg? refers to square meters of ground); LMA, leaf mass per area (g/m.°); N, foliar
nitrogen content (g N/g leaf); total canopy N, total canopy nitrogen content (g/m?). Field-collected sunlit top-of-canopy percent N
and LMA refers to leaf samples that were collected at the top of the canopy, were constantly sunlit, and had no leaves above (i.e.,
no sun impediment). Field-collected within-canopy percent N and LMA refer to leaf samples that were collected within the canopy
(i.e., not constantly sunlit, shaded, and with other leaves surrounding them).

result in flight line artifacts (Wanner et al. 1995, Coll-
ings et al. 2010, Colgan et al. 2012, Schlapfer et al.
2015, Weyermann et al. 2015). Annotated R code to
apply these corrections is available on our GitHub page
as the hypRspec package (see Data Availability).

From the resulting images, we extracted reflectance
data for all top-of-canopy field samples. Due to poten-
tial image orthorectification errors, GPS uncertainty,
and field challenges, we visually assessed GPS point

locations and, when necessary, moved the GPS loca-
tions, by hand, 1-2 m to the most appropriate pixel
based on a canopy height model and pixel brightness.
Due to flight line overlap, many samples had multiple
reflectance values. In these cases, we kept the reflectance
data from whichever image produced the brightest total
reflectance across all bands. We choose to take the
brightest reflectance value rather than the median here,
in order to filter pixels that were possibly affected by
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collection issues related to adverse weather conditions
that would not be resolved during the topographic and
BRDF correction process.

Once reflectance spectra for all top-of-canopy samples
(n = 52) were extracted, we developed PLSR models for
top-of-canopy percent N and LMA (Ollinger et al. 2002,
Townsend et al. 2003, Singh et al. 2015) using the same
methodology and code described for the laboratory
data. For the LMA model, we removed all lab measured
LMA values that were greater than 259 g/m? based on
the results from a Tukey’s extreme outlier test (k = 3).
This outlier test removed six samples from the data set.
We removed these outliers from the data set prior to fit-
ting our models, due to PLSR being sensitive to outliers
during the calibration and validation process (Martens
and Martens 2000). Once PLSR coefficients were calcu-
lated for top-of-canopy LMA and percent N, we applied
them to the corrected HSI data, resultingina 1 x 1 m
raster for each trait (percent N and LMA). We then fil-
tered the trait maps to remove all extreme outlier pixels
(k = 3) and values less than 0 from each 1 x 1 m raster
that result from the errors associated with reflectance
values collected during image collection. This resulted in
0.09% of the pixels being removed from the final raster.
Next, we resampled the mosaicked image to a
10 x 10 m spatial resolution using the mean value
within a given kernel, to match the spatial resolution of
the lidar-derived rasters. Following this, we mosaicked
the flight line rasters together with the mean of overlap-
ping pixels used in the final raster. All analysis was per-
formed in the R programming language and is available
on our GitHub page as the hypRspec package (see Data
Avalilability).

Remote-sensing fusion: total canopy N

To model within-canopy LMA, we extracted data
from the 26 previously calculated lidar structural attri-
bute rasters, and top-of-canopy percent N and LMA ras-
ters, for all 156 field-sample locations. We also included
the height and depth (e.g., distance from the top-of-
canopy) for each of the samples in the model. We then
removed all top-of-canopy samples (n = 52) since these
were used in previous steps and were predicted using the
HSI data and PLSR. We then tested the correlation
(Pearson’s R) between each variable and within-canopy
LMA. To avoid multicollinearity, variables with correla-
tions greater than 0.5 to each other were considered too
correlated and the predictor most correlated with LMA
was kept for further analysis. We then split the data set
into validation data (20%; n = 20) and training data
(80%; n = 84) using a weighted approach based on spe-
cies sample counts. Using the previously determined
variables we developed an ordinary least squares (OLS)
regression model from the training data. To determine
the best combination of variables for our final model pre-
dicting within-canopy LM A, we used backward stepwise
AIC model selection (Burnham et al. 2011, Mascaro
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et al. 2011). We then applied the resulting coefficients to
the validation data set to examine the overall predictive
accuracy of our model. Because we did not see a substan-
tial variation of within-canopy percent N in our data
(Appendix S1: Fig. S1) or in the literature (Serbin et al.
2014, Bachofen et al. 2020), we used top-of-canopy per-
cent N values for our within-canopy percent N values in
lieu of creating another predictive model.

We then applied the final model coefficients to the ras-
ter data to create a three-dimensional model of within-
canopy LMA (g/m; %), with any value less than zero set
to NA (due to predictive inaccuracy and noise in the ras-
ter data). Last, we used these three-dimensional models
to calculate within-canopy N per meter of ground area
(g/mg?) using the following equation:

h
Ny = ZN’I‘OC X LMA; x LAD;
i=10

where Ny, is the total canopy N (g/mGZ) for each
10 x 10 m pixel, i refers to each 1-m layer of the
canopy, starting at 10 m (layers below 10 m were not
considered in this analysis), / is the maximum height of
each column of voxels, Ntoc is the top-of-canopy N
(%), LMA, is the LMA at each voxel i (¢/m; %) and LAD;
is the LAD at each voxel i. This resulted in a two-dimen-
sional raster for the entire AOP collection area that sum-
marizes functional and structural traits within the
canopy volume. We also calculated foliar biomass using
the same equation described above but withholding the
Nroc values. Last, we removed all extreme outliers from
the raster images using Tukey’s outlier test (k = 3). All
analysis was performed in the R programming language.

Raster differences across scales

To test whether the distinction between leaf-level and
canopy traits was scale dependent, we tested the differ-
ences between the top-of-canopy and total canopy N
rasters at multiple spatial grains. First, we scaled the
original 10 x 10 m data to 30 x 30 and 250 x 250 m
resolutions to match Landsat and MODIS pixels using
the raster package in R (Hijmans 2019). Next, we ran-
domly extracted 10,000 points from the 10 x 10 m and
30 x 30 m rasters and 1,000 points from the
250 x 250 m raster. We then used a linear regression to
test the correlations between the two rasters at each spa-
tial resolution. To compare the spatial patterns of the
two rasters, we scaled and centered the rasters using the
scale function in the raster package and then subtracted
the normalized total canopy N raster from the normal-
ized top-of-canopy percent N raster.

To compare the overall spatial patterns of the two maps,
we extracted 10,000 random points from the top-of-
canopy and total canopy rasters at the 10 x 10 m resolu-
tion and fit variograms to these samples. We compared
estimates of spatial autocorrelation as well as differences in
the nugget, sill, and range of the variograms.
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Environmental driver analysis

To understand the influence of abiotic gradients and
management practices on the spatial patterns of top-of-
canopy percent N and total canopy N (g/mg?), we
assessed and analyzed the spatial patterns of the data,
using multiple regression and Moran’s [ to test these
relationships.

To quantify the abiotic gradients and management
practices, we calculated 26 topographic, geologic, and
management variables using ArcGIS, QGIS, and R
(Appendix S1: Table S2). Topographic variables were cal-
culated from the 10 x 10 m lidar data, geologic variables
were downloaded from the USGS (Horton et al. 2017),
and management variables were downloaded from the
U.S. Forest Service (available online).? All variables were
transformed into rasters for subsequent analysis.

We performed a Monte Carlo test with 1,000 simula-
tions to calculate a distribution of model coefficients,
Moran’s I of the residuals, and R>. During each simula-
tion, we extracted 10,000 random points from the rasters.
We then standardized all non-binary variables (Gelman
2007; mean = 0, standard deviation = 0.5) to allow direct
comparison between model coefficients. We developed
two regression models, one for top-of-canopy percent N
and one for total canopy N (g/mg?). For each simulation
and for each regression model, we used the following
methodology. First, we tested the correlation between
each variable (Pearson’s R) to avoid multicollinearity,
with correlations greater than 0.5 considered to be too
correlated and the predictor most correlated with N kept
for further analysis. Using the remaining variables, we
developed an OLS regression equation. With these
results, we used backward stepwise AIC model selection
to determine the best combination of variables for each of
our final models. Any remaining variables with non-sig-
nificant coefficients (P > 0.05) were then removed. We
then used these variables in a final OLS regression. To test
for spatial autocorrelation, we calculated Moran’s  on
the model residuals. All analysis was performed with the
R programming language.

REsuLTS

Trait prediction with PLSR: from leaf to canopy

To predict leaf-level percent N, we used a PLSR model
with five components to produce the best results
between training and validation data (Table 1;
Appendix S1: Fig. S2). This model had an R* of 0.90 for
the training data, an R? of 0.78 for the validation data,
and an R? of 0.87 when applied to all the data. All mod-
els had P < 0.001. Across the lab-measured percent N
samples, values ranged from 0.55% to 2.64% and PLSR-
predicted values ranged from 0.40% to 2.64%. For subse-
quent steps, we used PLSR-predicted values.

2 https://data.fs.usda.gov/geodata/edw/datasets.php
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TasLe 1. R® from partial least-squares regression (PLSR)
models.

Data set
Model Training Validation All
Lab percent N PLSR 0.9 0.78 0.87
HSI percent N PLSR 0.61 0.57 0.56
HSI LMA PLSR 0.72 0.77 0.73
Notes: HSI, hyperspectral imagery. All models have
P < 0.001.

To predict the top-of-canopy percent N from the
HSI data, we used a PLSR model with five compo-
nents. This model had an R* of 0.61 for the training
data, an R? of 0.57 for the validation data, and an
R* of 0.56 when applied to all the data (Table 1;
Appendix S1: Fig. S3). All models had P < 0.001.
After applying the PLSR coefficients across the
images and removing extreme outliers using a Tukey’s
outlier test (k= 3), percent N values ranged from
0.004% to 3.048% (Fig. 3a), which is comparable to
the ranges of percent N found in eastern United
States temperate forests by Serbin et al. (2014).

To predict LMA from the HSI data, we used a
PLSR model with eight components. This model had
an R? of 0.72 for the training data, an R? of 0.77 for
the validation data, and an R*> of 0.73 when applied
to all the data (Table 1; Appendix S1: Fig. S4). All
models had P < 0.001. Across the field-measured sam-
ples, LMA values ranged from 20.72 to 326.02 g/m; >
After applying the PLSR coefficients to the images
and removing extreme outliers using a Tukey’s outlier
test (k=3), LMA values ranged from 0.041 to
356.7 g/m; > (Fig. 3b). While these values are extrapo-
lated outside of the range of values used in our PLSR
model, they are comparable to LMA ranges found
globally by Poorter et al. (2009).

Within-canopy leaf traits: Lidar and HSI

To predict within-canopy LMA, our final model con-
sists of four lidar-derived metrics. These metrics included
top-of-canopy percent N, sample height, euphotic zone
depth, and standard deviation of LAD within a column
of voxels. Our final model for within-canopy LMA had
an R? of 0.51 for the training data and an R* of 0.50 for
our validation data (Appendix S1: Fig. S5). Both models
had P < 0.001.

After summing all within-canopy values we calculated
the total amount of N (g/mg?; Fig. 4), foliar biomass (g/
mg%; Fig. 3d), and LAI (m;*mg? Fig. 3c) for each
pixel. We then removed extreme outliers using Tukey’s
outlier test (k = 3). Values greater than 15 g/mg> were
removed from the total canopy N raster (0.03% of raster
pixels), values greater than 2,465 g/mg” were removed
from the foliar biomass raster (0.46% of raster pixels),
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Maps of functional and structural traits derived from NEON AOP hyperspectral imagery (his) and lidar data showing (a

top of canopy N, (b) LMA, (c) LAI and (d) foliar biomass. TOC, top-of-canopy; m; > refers to square meters of leaf material, while m¢
refers to square meters of ground. Call-out circle is a 1 km radius around the NEON flux tower at this site, shown as a star.

and values greater that 7 m; ’/mg” were removed from
the LAI raster (0.03% of raster pixels).

To illustrate the differences in canopy profiles of
within-canopy N (g/mg’) we extracted data from the
total canopy rasters using the GPS locations of a white
oak (Fig. 4a) and longleaf pine (Fig. 4b) sample from
our field data. The total amount of N in the white oak
sample was 6.99 g/mg> while there was 7.93 g/mg? in
the canopy of the longleaf pine sample. Moreover, the
profiles of each sample illustrate differing within-canopy
allocation strategies for the two species.

Top-of-canopy and total canopy N: differing spatial
patterns

After normalizing (mean =0, SD = 1) the top-of-
canopy percent N and total canopy N (g/mg?) rasters
for equal comparison, there was no relationship between
the two variables at any of the spatial resolutions, show-
ing that these differences are not scale dependent (Fig. 5,

panels a—c). Prior to normalization, we used linear
regression to test the relationship between the two vari-
ables at each spatial resolution (Fig. 5, panels d-f). All
linear regressions were significant (P < (0.05), but the lar-
gest R? value was 0.02, showing a very weak relationship
between top-of-canopy and total canopy N across spa-
tial resolutions. This lack of relationship shows that as
data is aggregated together at coarser spatial resolutions,
resulting in pixels containing multiple PFTs rather than
single species, there are still distinct differences between
top-of-canopy and total canopy N.

To assess differences in spatial patterns across the
landscape, we calculated variograms for the top-of-
canopy percent N and total canopy N (g/mg?) data sets
(Fig. 6). A comparison of Moran’s I values for the two
normalized (mean = 0, SD = 1) data sets showed that
the top-of-canopy percent N map was substantially
more spatially autocorrelated (Moran’s 7 = 0.026) than
the total canopy N map (Moran’s I = 0.014). For the
non-normalized data sets, top-of-canopy percent N
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Fic. 4. Map of total canopy N (g/mg>) and within-canopy N (g/mg>) profiles from white oak (total foliar N = 6.99 g/mg?) and
longleaf pine (total foliar N = 7.93 g/mg?). Locations were extracted based on the GPS positions of field samples. Call out circle is
a 1 km radius around the NEON flux tower at this site, show as a star.

samples exhibit spatial autocorrelation up to a distance of
1,200 m, while total canopy N (g/mg?) samples are spa-
tially autocorrelated up to a distance of 700 m. Partial sill
(Psill) measurements also differ substantially, showing dif-
ferences in variability between pairs of points, with top-of-
canopy percent N having a value of 0.23 and total canopy
N (g/mg?) having a value of 0.09. The shapes of the vari-
ograms indicate that top-of-canopy percent N is grouped
into clusters of similar values (lower nugget, longer range),
while the total canopy N values are more evenly distributed
(higher nugget, shorter range).

Regional patterns and environmental drivers: assessing
spatial structure

Elevation visually appeared to be a strong driver of
leaf trait spatial distributions in our maps (Fig. 3). To
quantify this relationship, we looked at the influence of
elevation on top-of-canopy percent N, total canopy N
(g/mg?), and the normalized difference between these
two data sets (Fig. 7). Top-of-canopy percent N was
related to elevation (R? = 0.13), while total canopy N (g/
mg?) was not related to elevation (P > 0.05). Therefore,
the correlation between the normalized difference of
these two estimates and elevation (R? = 0.06) is mostly
due to the stronger correlation between elevation and
top-of-canopy percent N.

To more broadly understand the effects of abiotic gra-
dients and management regimes on leaf and canopy
functional traits, we performed a Monte Carlo simula-
tion on the abiotic and management rasters to compile a
distribution of results. Models predicting top-of-canopy
percent N had a mean R? of 0.24 with a standard devia-
tion of 0.009. Eleven of the predictors appeared in over
20% of the models (Fig. 8), seven variables appeared in
no models, and seven variables appeared in all the mod-
els (Table 2). The only major topographic predictor (co-
efficient > 0.1) with a positive coefficient was soil
wetness index (SWI), while major topographic predic-
tors with a negative coefficient included elevation
(DTM), solar radiation at the winter solstice (SR.WS),
and TPI (topographic position index). The only major
geologic predictor (coefficient > 0.1) with a negative
coefficient was Coker substrate, while Eutaw substrate
had a positive coefficient and was a major geologic pre-
dictor. The only major management variable (coefficient
> 0.1) was areas burned in 2018 and it had a negative
coefficient.

Total canopy N (g/mg?) models had a mean R*> of
0.03 with a standard deviation of 0.003. Eleven of the
predictors appeared in over 20% of the models (Fig. 8),
four variables appeared in no models and two variables
appeared in all the models (Table 2). Solar radiation at the
summer solstice was the only major topographic predictor
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top-of-canopy percent N (%) and total canopy N (g/mg?). A
total of 10,000 random samples were extracted from both data
sets. Psill, partial sill.

(coefficient > 0.1) with a negative coefficient, while the only
major topographic predictor with a positive coefficient was
distance from western collection boundary (easting). Allu-
vial substrate was the only major geologic predictor (coeffi-
cient > 0.1) and it had a positive coefficient. There were no
major management (coefficient > 0.1) predictors in the
total canopy regressions.

For both regression models, many of the manage-
ment variables appeared in only a small percentage of

the total models. This is because these management
practices were only completed across a small fraction
of the entire landscape, and these areas were not ran-
domly sampled in each iteration of the Monte Carlo
simulation.

The residuals of both regression models exhibited
some spatial autocorrelation with top-of-canopy percent
N having a mean Moran’s / of 0.03 with a standard
deviation of 0.001 and total canopy N (g/mg?) having a
mean Moran’s I of 0.008 with a standard deviation of
0.0006. While this spatial autocorrelation of the residu-
als would indicate that there is a trend present that we
are not capturing, the aim of these regression was not
predictive, but instead to compare the influence of these
abiotic and management variables between the two func-
tional traits estimates.

DiscussioN

We used airborne remote sensing and field-collected
trait data to show that when three-dimensional forest
structure is considered, different patterns of N appear
across this landscape than are produced by two-dimen-
sional top-of-canopy functional trait estimates. This
analysis demonstrates that canopy functional diversity is
not equivalent to leaf functional diversity, which illus-
trates the dampened variation in total canopy N between
PFTs and across this landscape when compared to the
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FiG. 8. Coefficients from standardized variables (mean = 0,
SD = 0.5) from Monte Carlo simulations with variables that
appeared in at least 20% of the regressions. All coefficients have a
P < 0.05. Box plot components are mid line (median), box edges
contain the interquartile range, whiskers refer to the minimum and
maximum values excluding outliers, and circles refer to out-
liers. Variables are refered to in Supplement Table S2 and include
(in order from left to right) DTM (elevation), Easting (meters from
collection boundary), Eastness (aspect), Flow.Accum (flow accu-
mulation), Northing (meters from collection boundary), SR.WS
(solar radiation—winter solstice), SWI (soil wetness index), TPI (to-
pographic position index), Burn.2018 (Areas burned in 2018),
Burn.Years (Years since last burn), Thin.Times (Times thinned
since 1991), SR.SS (solar radiation—summer solstice), Coker (Coker
substrate), Clearcut. Years (Years since last clear cut).

heterogeneous spatial patterns produced by leaf func-
tional diversity. This suggests that these two measure-
ments correspond to different ecological processes and

that relationships between plant carbon assimilation and
leaf functional traits must be considered in the context
of canopy vertical structural heterogeneity.

Scaling and mapping leaf and canopy traits

Many studies have used HSI data to estimate plant
functional traits and lidar data to measure forest struc-
ture, with much success across a wide variety of ecore-
gions (Dahlin et al. 2013, Asner et al. 2015, Stark et al.
2015, Smith et al. 2019). By combining 3D structural
traits from lidar and 2D functional traits from HSI, we
show that a fusion of these two data types can be used to
model traits within the canopy volume. Moreover, our
findings are within the ranges reported in field-based
studies for LAD (Brown and Parker 1994, Parker and
Tibbs 2004), percent N (Serbin et al. 2014), LMA (g/
m;2; Poorter et al. 2009), and total canopy N (g/mGZ;
Cole and Rapp 1981; Fig. 9).

Our study focuses on an ecoregion consisting of
closed-canopy broadleaf stands and sparser needleleaf
forests, with our within-canopy trait estimates being
reliable across these two plant functional types (PFTs).
In addition, our within-canopy model utilizes variables
related to the differences in PFTs (top-of-canopy per-
cent N), the local light environment (standard deviation
of LAD within a column of voxels), and light capture
(euphotic zone depth). These variables have been
shown to be critical to canopy-level processes (Field
and Mooney 1986, Lefsky et al. 1999, Harding et al.
2001).

While our results show that we can accurately model
foliar functional traits within the canopy volume in this
ecosystem, more research is needed in different biomes
to test the ability of HSI and lidar to accurately estimate
within-canopy traits.

Measuring ecosystem function: top-of-canopy percent N
vs. total canopy N

While both foliar N and LMA have been identified as
key drivers of plant functional diversity (Diaz et al.
2016) and have shown strong correlations with leaf
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TaBLE 2. Mean standardized coefficients (mean = 0, SD = 0.5), standard deviation of coefficients, and percentage of models each

variable was present from Monte Carlo simulations.

Top-of-canopy Total canopy
Mean Standard Models Mean Standard Models
Variables coefficient deviation present (%) coefficient deviation present (%)
Topographic
DTM —0.259 0.027 100.0 —0.057 0.013 99.8
Easting 0.047 0.023 30.9 0.114 0.013 100.0
Eastness 0.044 0.009 99.8 0.024 0.005 20.9
Flow accumulation 0.023 0.004 35.3 —0.017 0.018 11.2
Northing 0.047 0.017 85.1 —0.034 0.009 70.0
Northness NA NA 0.0 0.027 0.006 4.7
Surface roughness NA NA 0.0 NA NA 0.0
Slope NA NA 0.0 NA NA 0.0
Solar radiation at summer solstice NA NA 0.0 —0.111 0.013 100.0
Solar radiation at winter solstice —0.249 0.011 100.0 —0.032 0.007 443
Soil Wetness Index 0.178 0.009 100.0 NA NA 0.0
Topographic Position Index —0.162 0.009 100.0 —0.040 0.009 97.1
Topographic Ruggedness Index NA NA 0.0 NA NA 0.0
Geologic substrate
Alluvial —0.091 0.151 1.3 0.153 0.158 8.3
Coker —0.144 0.015 18.1 —0.065 0.017 86.6
Eutaw 0.146 0.013 18.1 0.021 0.036 5.7
Gordo —0.023 0.008 7.9 0.038 0.009 7.6
Management
Prescribed burn 2018 —0.157 0.014 100.0 0.034 0.020 3.0
Times burned NA NA 0.0 0.025 0.010 7.8
Years since last burn —0.071 0.010 100.0 —0.036 0.010 90.9
Times chemically treated —0.009 0.020 4.8 —0.017 0.017 4.3
Years since last chemical treatment —0.021 0.003 2.1 —0.002 0.023 2.5
Times clearcut —0.013 0.020 7.5 —0.015 0.019 2.4
Years since last clearcut —0.023 0.008 17.3 —0.024 0.004 24.6
Times thinned —0.052 0.009 100.0 —0.046 0.009 98.2
Years since last thinning NA NA 0.0 —0.041 0.006 1.8

Note: All coefficients have P < 0.05. All variables are referenced in Supplement Table S2.

photosynthesis in temperate ecosystems (Field and
Mooney 1986, Evans 1989), we show that the spatial
patterns of leaf-level top-of-canopy percent N are not
equivalent to those of total canopy N (g/mg?). Top-of-
canopy leaf-level traits reflect key differences between
PFTs, with needleleaf species exhibiting low percent N
and high LMA, while broadleaf species have higher per-
cent N and lower LMA (Appendix S1: Fig. S1). These
fundamental differences in functional and structural
traits between PFTs produce distinct dendritic patterns
across this landscape corresponding to topographic fea-
tures including drainages, which are dominated by
broadleaf species, and slopes and ridges, which are dom-
inated by pines (Fig. 3a—d). However, when three-di-
mensional canopy structure is considered (i.e., total
canopy N), these distinct landscape patterns are damp-
ened (Fig. 4).

Fig. 7 further shows that these distinct spatial pat-
terns related to elevation are not reflected in our esti-
mates of total canopy N (g/mg?). This may suggest that

canopy architectural differences between PFTs are caus-
ing unique distributions of N within the canopies of
individual trees (Fig. 4a, b), and that these differences
represent trade-offs since different PFTs exhibit similar
total quantities of N (g/mg?) in their canopies (Fig. 9).
In this case, differences over a leaf function-structural
architecture trade-off produce the dampened spatial pat-
terns we see in this landscape (Fig. 4).

Given the importance of N for photosynthesis, these
dampened spatial patterns may not be surprising. By
varying LMA, individual trees will distribute N (g/m; %)
throughout their canopies in ways to maximize their
nitrogen use efficiency, utilizing as much of the available
N (g/mg?) as possible. Lower total N (g/mg?) within the
canopy volume would imply lower production, a disad-
vantage that would be hard to reconcile between PFTs
in the same ecosystem. While N-fixing trees could
change these patterns, we observed no N-fixing trees in
this landscape and overall, this area appears to have low
N-fixing tree abundance (Staccone et al. 2020).
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Fic. 9. North American foliar N values vs. Talladega
National Forest, Oakmulgee Ranger District (TALL) foliar N
values. TC, temperate coniferous; TD, temperate deciduous.
North American N (NA) values come from Cole and Rapp
(1981). Because our values calculated at TALL do not include
the lowest 10 m of the canopy, ANOVA results (P < 0.001)
show a significant difference between NA and TALL values but
not between forest types (TC and TD). Boxplot components are
refered to in Fig. 8.

Abiotic and management drivers of foliar and canopy N

Following community assembly theory (Keddy 1992),
abiotic drivers have been shown to predict species and
leaf trait distributions within landscapes with both
remote-sensing and field observations (Kraft et al. 2008,
Dabhlin et al. 2012). We show that these same types of
drivers can be used to predict top-of-canopy percent N
in this system, but not total canopy N (g/mg?).

Top-of-canopy percent N patterns have consistently
strong topographic, substrate, and management predic-
tors, with many of these predictors being related to the
distribution of PFTs across this landscape. For example,
higher elevation areas that receive more solar radiation
during the winter months and that were treated with a
prescribed burn in 2018 prior to NEON AOP flights had
consistently lower top-of-canopy percent N values. This
describes the spatial distribution of needleleaf species in
this ecosystem. Conversely, lower elevation areas with a
high soil water content had consistently higher top-of-
canopy percent N values, describing the distribution of
broadleaf species in this environment. These relation-
ships suggest that the spatial patterns of top-of-canopy
percent N are closely related to the spatial distribution
of species within this ecosystem.

In contrast, variables related primarily to forest struc-
tural changes and water availability were the main dri-
vers of total canopy N (g/mg?), even though these
relationships were considerably weaker, though still
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significant. For instance, areas that had been clear-cut,
thinned, or burned had lower total canopy N (g/mg?)
estimates than areas that did not have a documented
management history. This relationship is most likely due
to management activities resulting in significant struc-
tural changes to forest stands and the removal of foliar
biomass during these activities. Furthermore, areas that
received high solar radiation in the summer months also
had lower estimates of total canopy N (g/mg?). This
could be due to microclimatic effects. Water stress in
these sunnier, drier areas may cause a reduction in
growth and, therefore, total canopy N (g/mg?), as light
availability is not likely to be a limiting factor in this sys-
tem.

Model uncertainty and data concerns

There are many possible sources of error and uncer-
tainty to consider when scaling traits from leaf to land-
scape, including those related to field and GPS
collections, laboratory equipment, remote-sensing sen-
sors, and statistical methodologies. While we did not
conduct a formal assessment of uncertainty as it propa-
gates through this study, our findings are within the
ranges reported in many field-based studies (see Scaling
and mapping leaf and canopy traits). Our final PLSR
models did show a systematic bias of slightly underesti-
mating N and LMA in needleleaf species (Appendix S1:
Figs. S2, S3), which could partially explain the differing
landscape-scale relationships between total canopy and
top-of-canopy N. This could possibly be improved by
the inclusion of forest structure metrics such as LAI in
the PLSR models. However, due to the low-density lidar
data, we are forced to estimate structural traits at a coar-
ser spatial resolution (10 x 10 m) than the HSI data
(1 x 1 m). Because some field samples are closer than
10 m to one another, and thus exist within the same
pixel, the inclusion of structural traits did not correct
this bias.

While understory shade tolerant plants play an impor-
tant role in ecosystem functioning (Valladares et al.
2016), we ignored the lowest 10 m of the forest canopy
where many of these species occur due to limitations
with the lidar data from the NEON AOP (Kamoske
et al. 2019). As current lidar sensors within the NEON
AOP are upgraded, we will be able to ask important
questions about the role of the understory in ecosystem
functioning.

In this study, we only considered healthy green forest
vegetation, which may partially explain the weaker rela-
tionships between environmental variables and canopy
functional and structural traits. More research is needed
into how HSI and PLSR perform in stressed terrestrial
environments and across more heterogeneous land-
scapes.

The development of a universal model to predict leaf-
and canopy-level traits was beyond the scope of this pro-
ject; however, as more within-canopy foliar traits are
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collected across a diversity of ecosystems, PFTs, and tree
species, these models will become more robust and can
be applied to other regions.

Looking forward

With airborne and spaceborne platforms like the
NEON AOP, NASA Goddard’s Lidar, Hyperspectral,
and Thermal Imager (G-LiHT; Cook et al. 2013), the
Global Ecosystem Dynamics Investigation (GEDI; Stav-
ros et al. 2017), and the proposed Surface Biology and
Geology Mission (SBG; National Academies of
Sciences, Engineering, and Medicine 2018) collecting
HSI and lidar data across a variety of ecoregions, there
is a unique opportunity for researchers to ask and
answer questions related to how forest canopies function
across landscapes and continents, rather than just the
leaves at the top of the canopy.

In support of these new questions about ecosystem
function, we present a reproducible methodology to
model foliar traits throughout the entire canopy volume.
We also show that the spatial patterns produced by tra-
ditional top-of-canopy measurements of percent N are
dramatically different than those produced when three-
dimensional forest structure is considered. While more
research is needed to test these relationships in different
ecoregions and across latitudinal gradients, this ever-in-
creasing availability of HSI and lidar data will provide
new and exciting opportunities.

These opportunities may raise several questions about
the drivers of canopy function, for example, (1) what is
the role of soil nutrient availability and heterogeneity in
canopy function and (2) how are these relationships
affected by latitudinal gradients and climate regimes?
Further research is needed into these questions to better
understand the drivers behind ecosystem functioning in
horizontal and vertical space as well as through time.

CONCLUSIONS

Forest structural and functional diversity drive critical
canopy processes related to carbon sequestration; how-
ever, structure and function are rarely considered in uni-
son at ecosystem scales. Here we show that when forest
structure is considered, the patterns produced by the
total amount of N (g/m?) within the canopy volume are
substantially different from the patterns produced by
top-of-canopy percent N. Furthermore, since total
canopy N variation is dampened relative to leaf-level
variation over a landscape characterized by variable
PFT dominance, we find evidence of canopy architecture
and leaf function tradeoffs. Patterns of total N are dri-
ven by different abiotic gradients and management
regimes, further showing the differences between these
two estimates of ecosystem function.

These differing spatial patterns, as well as differing
abiotic and management drivers, show that canopy func-
tional diversity is not equivalent to leaf functional diver-
sity. By not considering structure and function together,
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there could be impacts on how we scale fine-resolution
ecological processes to landscape, continental, and glo-
bal models. However, with new space- and airborne
remote sensing platforms collecting HSI and lidar data
across a variety of ecoregions, we have an opportunity to
think about the terrestrial carbon cycle in three dimen-
sions. This new approach will potentially unlock impor-
tant insights into how forests function in a time of rapid
anthropogenic and environmental change.
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SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.2230/full

DATA AVAILABILITY

NEON AOP provisional discrete return lidar point clouds (e.g., NEON.DP1.30006.001) and hyperspectral orthorectified surface
directional reflectance (e.g., NEON.DP1.30003.001) were downloaded on 4 April 2019 from http://data.neonscience.org. R package
to estimate structural traits from airborne LiDAR data is provided on Zenodo at http://doi.org/10.5281/zenodo0.3987340. R package
to pre-process HSI data, extract reflectance data, and apply PLSR coefficients is provided on Zenodo at http://doi.org/10.5281/ze
n0do.3987336. Reflectance spectra and trait data are available through the ECOSIS database at: https://data.ecosis.org/dataset/
2018-talladega-national-forest--leaf-level-reflectance-spectra-and-foliar-traits. Laboratory measured trait data are available through
the TRY Database under data set ID 714.



