
����������
�������

Citation: Li, J.; Zhuang, Y.; Dong, S.;

Gao, P.; Dong, H.; Chen, H.; Chen, L.;

Li, L. Hierarchical Disentangling

Network for Building Extraction

from Very High Resolution Optical

Remote Sensing Imagery. Remote

Sens. 2022, 14, 1767. https://doi.org/

10.3390/rs14071767

Academic Editors: Tais Grippa,

Lei Ma, Claudio Persello and

Arnaud Le Bris

Received: 25 February 2022

Accepted: 4 April 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Hierarchical Disentangling Network for Building Extraction
from Very High Resolution Optical Remote Sensing Imagery
Jianhao Li 1, Yin Zhuang 1, Shan Dong 1,2,*, Peng Gao 3, Hao Dong 4, He Chen 1, Liang Chen 1 and Lianlin Li 4

1 Beijing Key Laboratory of Embedded Real-Time Information Processing Technology, Beijing Institute
of Technology, Beijing 100081, China; 3220200570@bit.edu.cn (J.L.); yzhuang@bit.edu.cn (Y.Z.);
chenhe@bit.edu.cn (H.C.); chenl@bit.edu.cn (L.C.)

2 State Key Laboratory of Media Convergence and Communication, Communication University of China,
Beijing 100024, China

3 Shanghai AI Laboratory, Shanghai 200232, China; gaopeng@pjlab.org.cn
4 Center on Frontiers of Computing Studies and School of Electronic Engineering and Computer Science,

Peking University, Beijing 100087, China; hao.dong@pku.edu.cn (H.D.); lianlin.li@pku.edu.cn (L.L.)
* Correspondence: dongshan@cuc.edu.cn

Abstract: Building extraction using very high resolution (VHR) optical remote sensing imagery is
an essential interpretation task that impacts human life. However, buildings in different environ-
ments exhibit various scales, complicated spatial distributions, and different imaging conditions.
Additionally, with the spatial resolution of images increasing, there are diverse interior details and
redundant context information present in building and background areas. Thus, the above-mentioned
situations would create large intra-class variances and poor inter-class discrimination, leading to
uncertain feature descriptions for building extraction, which would result in over- or under-extraction
phenomena. In this article, a novel hierarchical disentangling network with an encoder–decoder
architecture called HDNet is proposed to consider both the stable and uncertain feature description
in a convolution neural network (CNN). Next, a hierarchical disentangling strategy is set up to
individually generate strong and weak semantic zones using a newly designed feature disentangling
module (FDM). Here, the strong and weak semantic zones set up the stable and uncertain description
individually to determine a more stable semantic main body and uncertain semantic boundary of
buildings. Next, a dual-stream semantic feature description is built to gradually integrate strong
and weak semantic zones by the designed component feature fusion module (CFFM), which is able
to generate a powerful semantic description for more complete and refined building extraction.
Finally, extensive experiments are carried out on three published datasets (i.e., WHU satellite, WHU
aerial, and INRIA), and the comparison results show that the proposed HDNet outperforms other
state-of-the-art (SOTA) methods.

Keywords: building extraction; convolution neural networks; encoding–decoding method; hierarchical
disentangling; optical remote sensing imagery; very high resolution

1. Introduction

Building extraction plays an important role in several applications, such as in urban
planning, illegal building supervision, and geographical information surveying, mapping,
and updating [1–4], and these applications are significant to societal development and daily
human life. With the rapid development of VHR optical remote sensing imaging, a lot
of optical remote sensing data are available and can be used for building investigations.
Yet, when facing amounts of optical remote sensing data, the manual investigation of
buildings is arduous. It is necessary to develop an automatic and powerful building
extraction algorithm to eliminate this time-consuming labor. However, referring to several
published building extraction datasets [5–7], several statistical and visual results are shown
in Figure 1, and there are three main aspects (e.g., buildings in various environments
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showing great differences in scale, spatial distribution, and imaging conditions) affecting
the refined building extraction results. First, in Figure 1a, the horizontal axis represents the
proportion of different-scale buildings from datasets, and the vertical axis indicates the scale
distribution of each counted building. From the statistical and visual results in Figure 1a,
we can see that a large-scale spanning of buildings would create challenges when setting up
a robustness feature description to carefully extract the full scale of the buildings. Therefore,
these circumstances often result in the incomplete extraction of large-scale buildings and
missing extraction for small-scale buildings. Next, in addition to large-scale spanning,
the arbitrary spatial distribution of buildings is also a challenging situation that impacts
building extraction performance, which is shown in Figure 1b. Here, the horizontal axis
represents the different spatial distributions of buildings according to the initial datasets,
and the vertical axis represents the number of buildings per image. Subsequently, for
densely distributed buildings, despite each building being able to provide strong spatial
relevance to support each other during building extraction, this makes it hard to provide
satisfactory results with precise boundary information due to the smaller intervals of the
densely distributed buildings. Then, when buildings have a sparse and isolated spatial
distribution, the redundant background context information emerges in large quantities,
and there is a big risk of missing extraction or false alarms due to the uncertain semantic
feature description for building extraction. Moreover, as presented in Figure 1c–e, there
are three typical cases of shadows, occlusions and low contrast ratio to make a challenge
for effective semantic feature description and refined building extraction. Moreover, in
VHR optical remote sensing imagery, the interior details of buildings and the redundant
context of the surrounding background become clearer, which can further enlarge the intra-
class variance and worsen inter-class discrimination for building extraction from complex
scenes. Thus, when jointly considering these mentioned challenges, traditional hand-
crafted feature-based methods [8–16] (e.g., spectrum [8], shape [9], color [10], texture [11],
polygon [12,13], and shadow [14,15]) demonstrate poor building description and extraction
results. In recent years, because of the booming development of deep learning techniques, a
lot of convolution neural networks (CNNs) based encoder–decoder architectures have been
designed in the computer vision field, such as FCN [17], SegNet [18], GCN [19], PSPnet [20],
Unet series [21–23], and Deeplab series [24–27]. Since these networks can provide more
competitive results than traditional methods [8–16], they are widely used and studied for
automatic building extraction tasks in optical remote sensing scenes.

For example, for environmental riverbank protection in Chongqing, China, W. Boon-
pook et al. [28] utilized SegNet to achieve automatic building extraction from unmanned
aerial vehicle (UAV)-based images. J. Liu et al. [29] referred to Unet and combined the
residual block into a simplified U-shape encoder–decoder to achieve building extraction
for urban planning. G. Wu et al. [30] utilized a designed multi-scale supervision strategy
for FCN training and set up a multi-constraint fully convolutional network (MC-FCN) to
generate good results for varying scales of building extraction. Tremendous efforts have
demonstrated that CNN-based encoder–decoder methods can generate a stable pixel-level
semantic feature description for building extraction. However, when encountering the
challenge cases in Figure 1, there are no good enough results that can be generated from
VHR optical remote sensing imagery. Consequently, a lot of studies have been dedicated to
improving the semantic feature description ability of these methods to enhance building
extraction performance. Y. Liu et al. [31] and W. Kang et al. [32] introduced the spatial pyra-
mid pooling (SPP) module into the encoder–decoder of Unet that was able to further enlarge
the receptive fields (RFs) and aggregate multi-scale contextual information for building
description. Then, L. Hao et al. [33] employed inception downsampling modules in the
encoding procedure, and the dense upsampling convolution (DUC) was adopted instead
of bilinear interpolation or de-convolution to strengthen both information preservation
and discrimination for refined building extraction. Next, Y. Liu et al. [34] took the irregu-
lar shapes of buildings into account and adopted the U-shape encoder–decoder method
combined with asymmetric convolutions, providing more appropriate feature extraction.
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Moreover, atrous convolutions with different dilation rates were also employed during
deep layer feature extraction, enhancing the generalization ability of semantic description.
Furthermore, referring to the Deeplab series [24–27], J. Cai et al. [35] adopted DUC for a
decoder and designed multipath hybrid-dilated convolution to aggregate multiscale con-
text features in the encoder, obtaining acceptable building extraction results. Subsequently,
in view of a powerful encoder–decoder architecture-based semantic description method
and to alleviate losses in the shape or boundary information caused by stacked convolu-
tions and to achieve refined building delineation, Y. Yu et al. [36] designed the capsule
feature pyramid network (CapFPN), in which capsule layers are used as the encoder to pre-
serve the information that may be lost by downsampling consecutive convolutions. Then,
multi-scale capsule feature fusing is used as the decoder to generate more refined building
delineation results. Q. Hu et al. [37] followed the Unet architecture and utilized an attention
mechanism to set up an attention gate to facilitate feature fusion for the skip connection
in the encoder–decoder, and then the squeeze-and-extraction operation was adopted to
leverage the semantic feature generalization procedure for refined building delineation
using a residual recurrent convolutional neural network. A. Abdollahi et al. [38] proposed
a Multi-Res-Unet to optimize the skip connections in the Unet architecture and to assimilate
the features learned from the same scale level of the encoder and decoder. Moreover, they
also integrated semantic edge information with semantic polygons to retain the irregular
shape and refined boundary information. H. Ye et al. [39] also focused on the feature fusion
of the skip connections in U-shaped encoder–decoders, and they utilized the feature reuse
mechanism to refine the fused features by introducing more reasonable low-level spatial
information to alleviate fuzzy building boundary prediction to some extent. Furthermore,
in addition to studies [36–39] achieving building extraction from data with a more refined
shape or boundary, some research has considered building extraction tasks in which there
is a great amount of variation in the building size. R. Hamaguchi et al. [40] designed
size-specific prediction branches for small-, medium-, and large-scale building extraction
tasks followed by an Unet structure, and then they proposed a post-processing technique
for integrating the output probability maps from each scale of branches. Similar to [40],
H. Guo et al. [41] proposed a scale-robust deep-supervision network for building extraction
by designing a scale attention module combined with multi-scale deep supervision to
facilitate multi-scale decision fusion at the decoder. Then, S. Ji et al. [5] and Y. Liao et al. [42]
both utilized the dual-stream of a Siamese U-net architecture to individually model the
global and local information and finally fused them for building extraction tasks at different
scales. Next, E. Maggiori et al. [6], P. Liu et al. [43], S. Wei et al. [44], Q. Zhu et al. [45], and
F. Chen et al. [46] all designed specific multi-scale feature extraction and fusion networks for
building extraction, and [44,45] also incorporated polygon regularization post-processing
or spatial and channel attention mechanisms to refine the building extraction results at a
wide range of scales. In general, although substantial efforts [5,6,28–46] have been made
to refine building extraction, almost all of these methods focus on trading off the classi-
fication and localization performance by individually optimizing and fusing deep- and
shallow-layer features. Unfortunately, there is antinomy in the feature fusion of the deep
and shallow layers. As the receptive field continues to increase due to stacked convolutions,
it inevitably introduces optimized deep layer features that can improve classification ability
while worsening the localization ability. On the other hand, it also inevitably introduces
optimized shallow layer features to improve the localization ability while degenerating
classification ability. According to this antinomy in the deep- and shallow-layer feature
fusion, the above-mentioned methods often result in limitations and uncertain predictions
during building extraction. Therefore, there is still much room for improvement in refined
building extraction using VHR optical remote sensing imagery.



Remote Sens. 2022, 14, 1767 4 of 25

Figure 1. Statistical charts of the size and number buildings and examples of buildings with different
imaging conditions. (a) is the distribution of building size; (b) is the distribution of the number of
buildings in each image; (c) is building extraction affected by shadows; (d) is building extraction
affected by occlusions; (e) is a building extraction scenario with low contrast between the buildings
and background. All statistics and examples are taken from the three datasets (i.e., WHU satellite,
WHU aerial, and INRIA) that we used in this work.

In this article, we consider the existing challenges in refined building extraction and
rethink the current semantic description paradigm. A novel hierarchical disentangling
network called HDNet is proposed for refined building extraction. Different from previous
encoder–decoder architectures that trade off the classification and localization performance
by fusing specific deep and shallow layer features, the proposed HDNet sets up semantic
description using a hierarchical disentangling strategy and dual-stream semantic feature
description that focuses on individually describing the strong and weak semantic zones
and achieving effective feature fusion. Then, the newly designed feature disentangling
module (FDM) is used for the hierarchical disentangling strategy to decompose the hier-
archical features into strong semantic zones with a more stable semantic main body and
weak semantic zone with uncertain semantic boundaries among the stacked convolution
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layers. Here, the more stable semantic main body and uncertain semantic boundary can
be considered to be more effective feature descriptions for the main body and boundary
information of buildings. Next, after the hierarchical feature disentangling strategy, the
newly designed component feature fusion module (CFFM) is used to gradually integrate
a more stable semantic main body and uncertain semantic boundary followed by a dual-
stream semantic feature description. After dual-stream semantic feature description, the
strong and weak semantic zones can be elegantly fused to generate powerful semantic
descriptions for refined building extraction. Finally, extensive experiments are carried out
on three published datasets (i.e., WHU satellite [5], WHU aerial [5], and INRIA [6]) and
the comparison results show that when using an effective and new semantic description
paradigm for building extraction, the proposed HDNet not only outperforms the baseline
of Deeplabv3 [26], but also has more superior performance than Deeplabv3+ [27] regardless
of whether satellite or aerial data are used. Meanwhile, the proposed HDNet can provide
more competitive building extraction results than the other state-of-the-art (SOTA) building
extraction methods. In general, the main contributions of our study can be summarized
as follows:

• A novel hierarchical disentangling strategy and effective dual-stream semantic feature
description method are proposed for refined building extraction using VHR optical
remote sensing imagery that elaborates on the defects of previous semantic feature
description methods and provides a novel semantic feature description paradigm.

• A novel FDM is designed for the hierarchical disentangling strategy in the proposed
HDNet that can effectively decompose each feature into an uncertain semantic bound-
ary for the weak semantic zone and a more stable semantic main body for the strong
semantic zone.

• An effective CFFM is designed for dual-stream semantic feature description in the
proposed HDNet that can achieve better feature fusion for both strong and weak
semantic zones and can further facilitate final fine-scale semantic feature generation.

• A powerful convolution network called HDNet is set up for refined building extraction,
and extensive experiments demonstrate that the proposed HDNet method can provide
competitive building extraction results for both satellite and aerial datasets. Thus,
it can also be widely used for automatic building extraction applications, such as
building change detection, urban area investigations, illegal building supervision, and
so on.

The rest of this article is organized as follows: Section 2 introduces works related to this
research; Section 3 elaborates on the HDNet in detail; Section 4 reports the extensive experi-
ments. Finally, the discussion and conclusions are presented in Sections 5 and 6, respectively.

2. Related Works
2.1. Building Extraction from VHR Optical Remote Sensing Imagery

In recent years, thanks to the development of CNN-based semantic segmentation,
a lot of CNN building extraction methods have emerged that can be roughly divided
into two categories: object-based [47–49] and pixel-based [5,6,28–46,50–61] methods. First,
object-based methods mainly rely on CNN object detectors. Y. Xiong et al. [47] employed
ResNet-50 as the backbone of the one-stage object detector Yolov-2 to achieve building
detection using several specific bounding boxes. Y. Liu et al. [48] constructed a multi-scale
U-shape structure combined with a region proposal network (RPN) to achieve building
instance extraction by means of multi-task supervision. H. Guo et al. [49] designed an
object-based scene classification branch using prior information to leverage various types
of building extraction. Second, in terms of pixel-based methods, apart from the methods
mentioned in Section 1, there are other aspects of studies focusing on refined building
extraction. X. Pan et al. [50] introduced spatial and channel attention mechanisms into the
Unet architecture, which then had a generative adversarial network (GAN) incorporated
into it to generate refined building extraction results. A. Abdollahi et al. [51] also utilized
the GAN to facilitate SegNet with a bidirectional convolutional LSTM to generate more
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refined building extraction results. Q. Li et al. [52] integrated a CNN and graph model
together to implement the pairwise conditional random field for the features that were
able to preserve sharp boundaries and fine-grained building segmentation results. N. Gi-
rard et al. [53] added frame field output to a CNN-based segmentation model to leverage
precise polygon generation for building extraction. W. Li et al. [54] proposed a multi-task
segmentation network for pixel-wise building extraction via joint semantic and geometric
learning (e.g., multi-class corner and edge orientation predictions). In addition, [54] also
proposed a polygon refinement network to generate refined building extraction results.
As mentioned above, object- and pixel- based methods both are widely used in automatic
building extraction tasks. However, since object-based methods have a large risk of not
detecting buildings at the RPN stage, this results in a poor recall metric during building
extraction. Thus, most of the current research mainly focuses on pixel-based methods,
but in the face of various challenges, the semantic feature description of these methods is
not robust enough to solve uncertain building extraction problems in the main body and
boundaries of buildings in complex scenes. Thus, in this article, we also focus on exploring
a more effective and novel pixel-level semantic description paradigm to improve building
extraction performance without employing post-processing.

2.2. Boundary-Aware Semantic Segmentation

Recently, the boundary-aware semantic segmentation paradigm has started to attract
more and more attention in the semantic segmentation field. T. Takikawa et al. [62] in-
troduced dense image representation, where color, shape, and texture information are
all processed together in a deep CNN. However, they contain a very different type of
information that is relevant for pixel-wise classification. Thus, [62] proposed a two-stream
CNN architecture for semantic segmentation that deals with the boundary shape and classi-
fication streams separately for semantic segmentation tasks in natural environments. H. Ma
et al. [63] also indicated that boundary information is very important for semantic segmen-
tation and can supplement semantic details. Then, to better leverage boundary information
and fuse it with mainstream features, [63] proposed a two-stream boundary-guided context
aggregation network for semantic segmentation tasks in natural environments. Moreover,
H. He et al. [64] proposed a new bi-directional flow-based warping process to squeeze the
object boundary from the stable main body and then designed a specific boundary loss
label for supervision that is able to obtain accurate mask representation for both instance
and semantic segmentation tasks. Next, for optical remote sensing semantic segmentation
tasks, Y. Wang et al. [65] designed a boundary-aware multitask learning framework to
perform semantic segmentation, height estimation, and boundary detection within a uni-
fied model, and a boundary attentive module was proposed to build cross-task interaction
for master tasks, enabling their network to generate more refined segmentation results.
A. Li et al. [66] also proposed a semantic boundary awareness network for land cover
classification and a boundary attention module to capture refined sharp information from
hierarchical feature aggregation. Furthermore, in the refined building extraction works
from VHR optical remote sensing, H. Yin et al. [55] and C. Liao et al. [56] both introduced
boundary information with joint learning during building ground truth (GT) to improve
precise boundary generation during building extraction. Y. Zhu et al. [57] proposed two
cascaded networks (e.g., Edge-Net and Detail-Net) for automatic building extraction from
VHR aerial images. Here, in [57], the Edge-Net network that was designed captured and
preserved boundary information for building detection, and then the Detail-Net network
was designed to refine the results obtained by Edge-Net. X. Jiang et al. [58] also proposed
two stage-refined building extraction frameworks based on encoder–decoder prediction
and a residual boundary refinement module. K. Lee et al. [59] designed a new metric called
the boundary-oriented intersection over union, which was used for boundary-oriented
losses to generate precise building extraction results followed by a two-stage extractor.
Following the Deeplabv3+ framework, A. Jiwani et al. [60] designed an F-Beta measure
to balance the relationship between the boundaries and GT to generate refined building
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extraction results. In addition, facing the lack of consideration of semantic boundaries,
Y. Jin et al. [67] proposed a novel network embedded with a special boundary-aware loss
to alleviate the huge uncertainty predictions at the building boundaries. In summary, in
recent years, researchers have gradually realized that boundary-aware information is very
important for the semantic segmentation field. Specifically, in automatic building extraction
applications using VHR optical remote sensing imagery, accurate boundary and consistent
building area predictions can help to generate the expected results. Although existing
methods mainly focus on learning boundary-aware information using a specific loss func-
tion, they lack the specific consideration of the semantic features to solve the challenge of
inaccurate boundary information description in complex scenarios. In this case, it is often
difficult to obtain satisfactory boundaries, and this should continue to be explored.

2.3. Effective Multi-Scale Feature Fusion

Effective feature fusion is a core topic in computer vision tasks and has been widely
studied in a lot of fields [68–70]. Initially, feature map concatenation is a simple feature
fusion method in CNNs that is often seen in various multi-scale feature fusion modules.
For example, P. Liu et al. [43] designed a spatial residual inception module to aggregate
multi-scale contexts for building extraction by successively fusing multi-level features.
S. Wei et al. [44] concatenated multi-scale decoding features to achieve multi-scale descrip-
tions for various scale buildings. H. Yin et al. [55] utilized concatenation operations to fuse
boundary and semantic branch features for refined building extraction. Then, due to the
wide and successful application of an attention mechanism in CNN networks [70,71], more
effective feature fusion methods have emerged. Q. Zhu et al. [45] and C. Liao et al. [56] both
adopted the squeeze mechanism during channel attention to optimize and concatenate
multi-scale features for building extraction. W. Deng et al. [61] designed an attention
gate-based encoder–decoder architecture for optimizing the skip connection in multi-scale
encoder and decoder feature fusion as well as in the balancing classification and localization
performance for final building extraction. A similar ideal was also utilized in J. Huang
et al. [70], where an attention-guided feature fusion module was designed for multi-scale
feature fusion in an encoder–decoder architecture to achieve effective multi-scale semantic
feature representation. In conclusion, an effective multi-scale feature fusion way is a very
important element for building extraction at varying scales. It can effectively utilize the
hierarchical expression characteristics of a CNN to combine the advantages of multi-scale
features. Moreover, it can also avoid the interference of inaccurate information and improve
the expressiveness of semantic features to promote refined building extraction performance.
Consequently, effective multi-scale feature fusion has always been a research hotspot.

3. Method

In this section, an overview of the proposed HDNet is provided in Section 3.1. Then,
in Section 3.1, the hierarchical disentangling strategy, dual-stream semantic feature descrip-
tion, and multitask supervision are individually elaborated upon in Sections 3.2–3.4.

3.1. Overview

Figure 2 shows the training framework of the proposed HDNet, which includes three
parts: (a) a hierarchical disentangling strategy, (b) dual-stream semantic feature description,
and (c) multitask supervision. First, different from previous studies [31,32,34,61] in which
classification and localization performance are traded off by fusing the specific deep and
shallow layer features, our research focuses on stable and uncertain semantic feature
descriptions for buildings. Thus, we decompose each residual layer of the feature map
during hierarchical feature representation, which can be defined as two multi-scale feature
sets with a strong semantic zone (i.e., a more stable semantic main body) and a weak
semantic zone (i.e., uncertain semantic boundary). Then, an FDM is designed for feature
disentangling and is coupled with hierarchical feature representation in the encoder, as
shown in Figure 2a. Here, ResNet-50 is employed as the encoder, but it can be replaced
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by any other powerful backbone. Next, after the hierarchical disentangling, the two
disentangled multi-scale feature sets, the more stable semantic main body and the uncertain
semantic boundary, are fused and generalized by the designed CFFM and parallel multi-rate
atrous convolutions during dual-stream semantic feature description, which can generate
two strong and weak semantic zones that can then be fused by a feature fusion (FF) module
to obtain the final semantic description, as shown in Figure 2b. Finally, corresponding
to a dual-stream sematic feature description, the multitask supervision module shown in
Figure 2c is designed to jointly supervise the more stable semantic main body, the uncertain
semantic boundary, and their fused features based on three specific supervising signals.
Then, the proposed HDNet shown in Figure 2 can obtain refined building extraction
results for both consistent building region predictions and precise boundary generations.
Moreover, based on the proposed method, a novel semantic feature generalization method
called HDNet, there is no need to introduce additional features or operations into the
final fused semantic feature to balance the classification and localization capabilities, and
the proposed method can also prevent the semantic gap from being influenced and is
followed by the proposed hierarchical disentangling and dual-stream semantic feature
description methods. Then, the hierarchical detangling strategy, dual-stream sematic
feature description, and multitask supervision can be elaborated upon as follows:

Figure 2. The framework of the proposed HDNet. (a) is the hierarchical disentangling strategy; (b) is
the dual-stream semantic feature description; (c) is the multitask supervision.

3.2. Hierarchical Disentangling Strategy

As far as we know, during general semantic feature generalization, the feature infor-
mation is gradually aggregated through the encoding process, and then a more stable and
abstract description is generated in the deep layers. However, at each deeper level, the
features in the encoder will inevitably lose fine-scale information (e.g., precise boundaries
and clear shapes), resulting in serious feature misalignment among a large number of
hierarchical features, creating a semantic gap during hierarchical feature fusion. Thus, it is
difficult for previous methods to balance their classification and localization capabilities.
As discussed and introduced in Section 1, we expect to decompose the semantic features in
the hierarchical feature representation into two parts, which can be defined as two feature
sets: the more stable semantic main body and the uncertain semantic boundary. Here,
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in each feature layer, the more stable semantic main body can be considered to be the
invariant pixel-level description for the foreground (i.e., building) and background, and the
uncertain semantic boundary can be seen as the description of the boundary pixels with
an uncertain state between the foreground (i.e., buildings) and background. Therefore, an
FDM module was designed and applied to two adjacent encoder features to achieve the
feature disentangling shown in Figure 3.

Figure 3. The detailed structure of the designed FDM.

In Figure 3, the inputs F ∈ RC×H×W and F′ ∈ R2C×H
2 ×

W
2 are low- and relatively high-

level features obtained by a 1× 1 convolution to squeeze channels from the original encoder
features, and C, H, and W indicate the channel, height, and width of the low-level feature
map F. Here, the relatively high-level feature F′ has a smaller spatial size and larger channel
number than the low-level feature F. Now, in order to disentangle the semantic features, we
need to know which feature points in the relatively high-level feature map are more stable
or uncertain. Consecutive convolution operations not only aggregate the deeper semantic
feature information to be more stable, but they also lead to the loss of details and feature
misalignment, so we considered taking the adjacent low-level features as a reference to
align the low- and relatively high-level features to extract more stable semantic main body
and uncertain semantic boundary pixels. Therefore, as shown in Figure 3, before feature
disentangling, the size of F and F′ should be unified. Here, a 1× 1 convolution and bilinear
interpolation up-sampling are applied for F′ to generate F′′ ∈ RC×H×W that is the same
size (i.e., C, H and W) as the low-level feature F. To make the network automatically learn
the specific feature misalignment, the feature flow field δ ∈ R2×H×W from F′′ to F can be
determined by a flow mechanism, such as the one shown in Figure 3. Specifically, F and F′′
are first concatenated together, and then a 3× 3 convolution is employed to generate the δ,
which has two-dimensional channels that determine the deviation direction of each feature
point in the flow field. The δ depicts the relationship to align the F′′ with the low-level
feature F. Thus, the formulation of the flow mechanism can be expressed as below:

δ = conv3×3(cat(F, F′′ )) (1)

In Equation (1), cat(·) represents the concatenation operation, and conv3×3(·) repre-
sents a 3× 3 convolution layer to capture the local information of the feature field. Then,
through Equation (1), each feature point in the relatively high-level feature map has a corre-
sponding offset for the differentiable bilinear sampling mechanism that can be employed
to rectify F′′ via a feature flow warp operation, as expressed by Equation (2):

F′MainBody = Φ(F′′ , δ) = ∑
ρ∈N(ρ)

ωρF′′ (ρ) (2)

In Equation (2), Φ(·) denotes the feature warp operation, and ρ is the feature point in a
relatively high-level feature F′′ . N(ρ) indicates the neighbors of each warped feature point ρ
in F′′ , and ωp is the corresponding offset weight in the flow field. Thus, using Equations (1)
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and (2) and referring to the low-level feature flow guidance, the strong semantic zone of the
more stable semantic main body F′MainBody in a high-level feature map can be decomposed
by feature warp operations. Next, the weak semantic zone with an uncertain semantic
boundary can be produced by Equation (3):

F′UncertainBoundary = F′′ − F′MainBody (3)

Based on Equation (3), we can achieve the feature disentangling in the relatively
high-level features that refer to adjacent low-level features. Then, coupled with hierarchical
feature representation, the designed FDM can be performed on three groups of adjacent
features, as shown in Figure 2. Thus, the proposed hierarchical disentangling strategy
would alleviate the semantic gap that exists in the interlayer, setting up a good foundation
for subsequent dual-stream semantic feature description.

3.3. Dual-Stream Semantic Feature Description

After the hierarchical disentangling strategy introduced in Section 3.2, two multi-scale
feature sets with a more stable semantic main body and uncertain semantic boundary can
be obtained, as shown on the left of Figure 4. Here, unlike previous studies that only fuse
the deep- and shallow-layer features to generate a semantic description, the multi-scale
characteristics of buildings of various scales are considered, and a dual-stream semantic
feature description architecture is set up to integrate these multi-scale semantic features
that belong to strong and weak semantic zones in two parallel branches. Therefore, a
progressive feature fusion strategy and a CFFM are proposed.

Figure 4. The framework of the dual-stream feature description architecture.

As illustrated in Figure 4, before layer-by-layer feature fusion, the up-sampling, down-
sampling, and channel compression operations are employed to regulate these hierarchical
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disentangling features, which have different spatial sizes and channels (i.e., C, 2C and 4C),
to have the same spatial size and 2C channels at the end. Then, in the strong semantic
zone, to ensure a more stable pixel-level prediction ability, a series of more stable semantic
main body features are fused in a top-down way. Additionally, in the weak semantic zone,
to describe the uncertain state of the boundary information, a series of weak semantic
boundary features are fused in a bottom-up way.

For efficient component feature fusion and to alleviate the semantic gap, a CFFM,
the purple block in Figure 4, was designed to selectively fuse the valid information layer
by layer and was applied in both the strong and weak semantic zones. Additionally, the
depth-wise, parallel multi-rate atrous convolutions (e.g., the atrous rates are 1, 2, and 5) and
the 1× 1 convolution are then individually applied to the strong and weak semantic zones
to achieve feature aggregation. Finally, two features from the strong and weak semantic
zones are fused by a feature fusion module, which is a pixel-wise addition in this paper, and
fed into the prediction head (PH), which is the yellow block in Figure 4 for GT supervision.
In addition, the strong and weak semantic zones are also individually fed into the PH for
auxiliary supervision. A detailed structure of the CFFM is shown in Figure 5a.

Figure 5. The details of the CFFM and PH. (a) is the component feature fusion module (CFFM); (b) is
the prediction head (PH).

In Figure 5a, X and Y are the regulated adjacent feature layers from the gradually
feature fusion method, and they are the inputs of the designed CFFM. This is different
from the normal feature fusion methods that capture the concatenation operation without
considering feature information interactive flowing. In CFFM, before feature fusion, we
carefully consider the complementarity of the adjacent feature layers and utilize the sigmoid
function as a gate to select and guide complementary information fusion, which can not
only significantly reduce the invalid information during feature fusion, but also make the
feature fusion more reasonable. The whole process from Figure 5a also can be formulated
via Equations (4)–(6):

X̃ = (1 + GX) · X + (1− GX) · GY ·Y (4)
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Ỹ = (1 + GY) ·Y + (1− GY) · GX · X (5)

Z = cat
(

X̃, Ỹ
)

(6)

In Equations (4)–(6), X̃ and Ỹ are the optimized feature layers that are prepared
for concatenation operations, and Z is the output of the fused features produced by the
designed CFFM. Then, cat(·) indicates the concatenation operation, and Gx and Gy are the
attention coefficients generated from the gate, as shown in Figure 5a. Here, Gx and Gy are
produced by a 1 × 1 convolution and the sigmoid function and can be used to suppress
the invalid information by multiplying it with the corresponding inputs of X and Y. On
the other hand, (1 − Gx) and (1 − Gy) represent the feature information that is not noticed
in the corresponding input features of X and Y; thus, we applied interaction for X and Y
to make them more complementary, as shown in Figure 5a and in Equations (4) and (5).
Furthermore, when the hierarchical disentangling features of the strong and weak semantic
zones go through gradual feature fusion via the designed CFFM, the fused features have
a spatial size that is 1

4 of the input with the 2C channel as two parts. Here, referring to
Deeplab v3 [14] and v3+ [15], the depth-wise and parallel multi-rate atrous convolutions are
performed on strong and weak semantic zones, achieving semantic feature generalization,
and then a 1× 1 convolution is employed to refine feature fusion, as shown in Figure 4.
Next, after FF, we can obtain three parts (i.e., the more stable semantic main body, uncertain
semantic boundary, and their addition), and then, they are parallel fed into three parallel
PH blocks for pixel-level predictions and multitask supervision. The details of the PH
block are shown in Figure 5b and consist of a cascading 3× 3 convolution, BN, ReLU, a
1× 1 convolution, and up-sampling operations.

3.4. Multitask Supervision

As shown in Figures 2 and 4, based on the proposed novel semantic feature description
paradigm, there are three supervision tasks that can optimize the results in the training
phase, and this joint loss includes the strong semantic zone of the more stable semantic
main body, the weak semantic zone of the uncertain semantic boundary, and GT. Thus, a
multitask supervision function can be written as Equation (7):

Ltotal = λ1 · LS + λ2 · LB + λ3 · LE (7)

In Equation (7), Ltotal is the total loss in multitask supervision, and λ1, λ2, and λ3
are the weighted factors which are used to balance the contribution of each task. In our
work, λ1, λ2, and λ3 are empirically set as 1, 1, and 20. Next, LS, LB, and LE in Equation (7)
correspond to entire segmentation loss, loss in the strong semantic zone of the more
stable semantic main body, and loss in the weak semantic zone of the uncertain semantic
boundary, respectively. Here, the supervision signal of the more stable semantic main
body is considered to be the foreground (i.e., buildings) and background without uncertain
boundary information, and, on the contrary, the uncertain semantic boundary is considered
as the uncertain state of the building boundary information. Therefore, the GT is used
for LS, and the auxiliary supervision signals of LB and LE are manually generated by
morphological image operations (e.g., erosion, dilation, and subtraction), which decompose
the GT into two parts for LB and LE. Next, the binary cross entropy (BCE) loss [72] is chosen
for LS, LB, and LE in HDNet training phase, which can be expressed as Equation (8):

LS = LB = LE = − 1
N ∑N

i=1[yi · log(pi) + (1− yi) · log(1− pi)] (8)

In (8), N is the number of samples; yi ∈ {0, 1} denotes the label of pixel i, which
represents whether pixel i belongs to the building or not; and i is the index. Pi ∈ [0, 1] is
the prediction probability of pixel i. Finally, using Equation (8), the multi-task supervision
can leverage the proposed HDNet to rapidly converge and generate more refined building
extraction results.



Remote Sens. 2022, 14, 1767 13 of 25

4. Experiment
4.1. Evaluation Indexes and Datesets

To evaluate the building extraction performance, we used pixel-level metrics that
included Recall, Precision, F1-score, and IoU. The Equations are as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 = 2× Precision× Recall
Precision + Recall

(11)

IoU =
TP

FP + TP + FN
(12)

In Equations (9)–(12), TP denotes the number of pixels that are correctly predicted
as the building area, FP denotes the number of pixels where the background pixels are
incorrectly predicted as buildings, TN denotes the number of pixels that are correctly
predicted as the background, and FN is the number of pixels where building pixels are
incorrectly predicted as the background.

The datasets that we used for building extraction in our study are three open accessed
building datasets, namely the WHU Aerial imagery dataset [5], the WHU Satellite dataset
II dataset [5], and the INRIA aerial image labeling dataset [6]. These datasets have been
widely used in published works based on convolutional neural networks, and their data
volume can support deep learning research. Therefore, these datasets will be able to provide
a good assessment of the generalization ability of our network. Information regarding
these three datasets is reported below:

WHU Aerial imagery dataset: This dataset covers an area of 450 square kilometers
and has a 0.3 m spatial resolution. The dataset consists of more than 187,000 independent
buildings extracted from aerial images from Christchurch, New Zealand. These areas
contain countryside, residential, cultural, and industrial areas.

WHU Satellite dataset II dataset: This dataset consists of six neighboring satellite
images covering 860 km2 over East Asia. It is a useful complement to other datasets
collected from Europe, America, and New Zealand and supplies regional diversity. The
dataset contains images of 34,085 buildings with a 2.7 m ground resolution

INRIA aerial image labeling dataset: This dataset contains 360 aerial RGB images with
various building characteristics. The dataset covers different European and American cities,
including Chicago, San Francisco, Vienna, Innsbruck, Kitsap, Bloomington, and East/West
Tyrol, etc. The images have a spatial resolution of 0.3 m and cover an overall area of 810
square kilometers.

4.2. Implementation Setting

All of the experiments are carried out and analyzed on the published WHU aerial [5]
and satellite [5] and INRIA [6] building extraction datasets. The WHU aerial [5] imagery
dataset contains 5772 images for training and 2416 images for testing. The WHU satellite
dataset [5] has 3135 images for training and 903 images for testing. The image size of
the WHU aerial and satellite datasets is 512 × 512. Each image in the INRIA building [6]
dataset is 5000 × 5000, and all of the images were spliced into 512 × 512 pixels to finally
obtain 6000 images for training and 2500 images for testing. To improve the robustness of
the model, we also used several data augmentation operations, including random flipping,
random rotation, and color enhancement. Moreover, all of the comparison methods were
implemented by Pytorch 1.5.0 and were performed on a TITAN RTX GPU. The proposed
HDNet was trained over 200 epochs, and the batch size was set to 8. Here, we adopted
a stochastic gradient descent (SGD) optimization strategy, and the initial learning rate
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and momentum term were set as 0.01 and 0.9, respectively to dampen the oscillations
during optimization.

4.3. Performance Comparison and Analysis

To evaluate the effectiveness of the proposed HDNet model for refined building ex-
traction from VHR optical remote sensing imagery, we selected several remarkable CNNs
for semantic segmentation and building extraction as comparative methods. Among these
methods, FCN [17], Unet [21], Deeplabv3 [26], and Deeplabv3+ [27] are the classical se-
mantic segmentation architectures. Moreover, some recently determined boundary-aware
semantic segmentation algorithms, including Gated-SCNN [62], BACNet [63], BAMTL [65],
and SBANet [66], were chosen to verify the superiority of multi-task supervision. MAP-
Net [45] is a recently published method for building extraction, which proposes a multi-
parallel path for extracting multiscale buildings and precise boundaries. Res2-Unet [46],
a recently published enhanced version of Unet, focuses on multi-scale learning to deal
with easily omitted small buildings and complicated details of background objects. Then,
to demonstrate the performance of the compared methods under different scenarios, the
satellite and aerial observation datasets from the WHU [5] and INRIA [6] datasets were
employed for performance comparison and analysis.

4.3.1. Comparison using the INRIA Dataset

The INRIA dataset covers most types of buildings in five cities, including sparse court-
yards, dense residential areas, and large venues. Several comparative experiments were
carried out on the INRIA dataset to compare the building extraction performance achieved
by the proposed HDNet and the comparative methods. The quantitative evaluation results
are reported in Table 1.

Table 1. Quantitative comparison on the INRIA dataset.

Methods Recall (%) Precision (%) F1-Score (%) IoU (%)

FCN [17] 70.4 74.3 72.3 56.7
Unet [21] 82.1 83.2 82.6 71.4

Deeplabv3 [26] 82.4 78.0 80.2 66.9
Deeplabv3+ [27] 82.7 85.8 84.3 72.7

MAPNet [45] 83.4 85.0 84.2 72.7
Res2-Unet [46] 80.3 84.4 82.3 69.9

Gated-SCNN [62] 85.9 85.4 85.6 74.9
BCANet [63] 84.4 84.5 84.4 73.1
BAMTL [65] 83.9 84.4 84.2 72.7
SBANet [66] 83.0 85.0 83.9 72.3

HDNet (ours) 86.7 87.7 87.2 77.3
For every test region, the highest values for different metrics are highlighted in bold.

It can be seen that the proposed HDNet outperforms other methods on all four metrics.
The FCN and Deeplabv3 perform worse than most of the other methods because they
lack detailed structural information in shallow layers. Compared to our baseline model
deeplabv3 [26], HDNet can improve F1-score by 7.0% and the IoU by 10.4% on the INRIA
aerial dataset. Moreover, the proposed HDNet also outperforms Deeplabv3+ [27], and
achieving performance improvements in the F1-score by 2.9% and in the IoU by 4.6%,
which indicates that the proposed hierarchical disentangling strategy and dual-stream
semantic feature description in HDNet are better than simply introducing a shallow feature
layer into the final fused semantic feature to make a tradeoff between the pixel-level
classification and localization performance. Additionally, compared to the second-best
method, Gated-SCNN [62], HDNet improved the F1-score from 85.6% to the highest
score of 87.2% and improved the IoU score from 74.9% to 77.3%. These improvements
indicate that the proposed novel semantic feature description paradigm of HDNet is robust
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enough to cope with building extraction tasks using VHR aerial images taken in different
complex conditions.

4.3.2. Comparison of the WHU Aerial Dataset

The WHU aerial dataset covers a large variety of buildings, such as small residential
blocks, industrial factories, and commercial buildings. The buildings in residential blocks
are distributed very densely and are small in size. Buildings in industrial factories and
commercial buildings have various shapes and textures. This means that the model needs to
extract buildings from such complex environments as well as possible. Table 2 summarizes
the quantitative comparison with different models on the WHU aerial dataset. Compared
to the results on the INRIA dataset, the IoU metrics are all higher than 80%, with the
exception of FCN [17] and Deeplabv3 [26], indicating that the WHU aerial dataset is of
higher quality and is easier to distinguish. Especially, the HDNet achieves the best scores
on all four metrics, and the IoU score of HDNet exceeds 90%.

Table 2. Quantitative comparison on the WHU aerial dataset.

Methods Recall (%) Precision (%) F1-Score (%) IoU (%)

FCN [17] 72.4 74.9 73.7 58.3
Unet [21] 89.4 93.6 93.3 82.1

Deeplabv3 [26] 78.1 77.6 77.9 63.7
Deeplabv3+ [27] 91.2 93.0 92.1 85.4

MAPNet [45] 93.3 94.6 94.0 88.7
Res2-Unet [46] 92.3 91.8 92.0 85.3

Gated-SCNN [62] 93.8 94.8 94.3 89.2
BCANet [63] 93.6 93.3 93.5 87.7
BAMTL [65] 92.5 92.5 92.5 86.1
SBANet [66] 92.3 91.8 92.0 85.3

HDNet (ours) 94.8 95.2 95.0 90.5
For every test region, the highest values for different metrics are highlighted in bold.

4.3.3. Comparison on the WHU Satellite Dataset

Table 3 provides a quantitative comparison of the different models on the WHU
satellite dataset. Compared to the results of the WHU aerial dataset, all of the metrics
are much lower. There are two reasons for this. First, the WHU satellite dataset has a
much lower resolution. Second, the scenes in the WHU satellite dataset have low contrast.
Specifically, the small-scale buildings that have merged into the surroundings create great
difficulties for extraction. Despite this, it is clear that the proposed HDNet outperforms
other methods. Compared to recently published work using Res2-Unet [46], the proposed
HDNet improved the IoU by 5.2%. Moreover, the HDNet exhibits a considerable advantage
over boundary-aware semantic segmentation methods, such as the Gated-SCNN [62],
BCANet [63], BAMTL [65], and SBANet [66] methods.

To visually demonstrate how these networks perform building extraction tasks in
different scenarios, some examples are shown in Figure 6. The first two columns are input
images and GT images, and the following columns are probability images predicted by
FCN [17], Deeplabv3 [26], Deeplabv3+ [27], Res2-Unet [46], BAMTL [65], MAPNet [45],
and the proposed HDNet method, where white pixels represent buildings, and the black
pixels are objects that are not buildings. The red pixels are false alarms that should be non-
buildings but that were predicted as building pixels. The green pixels indicate the buildings
that were missed during extraction. Then, the first to the sixth rows are examples from the
INRIA dataset; rows 7 to 10 are examples from the WHU aerial dataset, and the last five rows
are from the WHU satellite dataset. From the INRIA dataset, the first two rows are examples
of isolated buildings. It can be seen that the proposed HDNet was the only algorithm that
was able to successfully extract the buildings from the surrounding environment. The
following four rows are examples of large-scale and sparsely distributed buildings for
which the proposed HDNet can provide the best results both in terms of the integrity and



Remote Sens. 2022, 14, 1767 16 of 25

the accuracy of the predicted building boundaries. For the WHU aerial dataset, it can
be seen that HDNet presents the least false alarms in the face of densely distributed and
very small-scale buildings. The more complete main body and finer boundary extraction
of the small-scale buildings prove that the proposed hierarchical disentangling strategy
and the effective dual-stream semantic feature description method can provide powerful
semantic description ability for buildings in complex environments. The last five rows
of Figure 6 show examples of buildings that have been extracted from rural scenes in the
WHU satellite dataset. In the first three scenarios, the buildings are randomly scattered
in rural settlements, and the buildings and background elements have similar shapes
and colors. Many misclassifications were observed at the junction of the buildings and
the background when the six comparative methods were used. The last two scenarios
are for isolated buildings in different seasons and lighting conditions. It was difficult
for the six comparative methods to separate the confusing non-building backgrounds
and buildings with a dense distribution with low-contrast backgrounds. Overall, HDNet
produces the cleanest and the most accurate compared to the other methods, meaning
that the semantic description paradigm of the proposed HDNet is capable of learning the
generalized representation of semantic features.

Table 3. Quantitative comparison on the WHU satellite dataset.

Methods Recall (%) Precision (%) F1-Score (%) IoU (%)

FCN [17] 54.1 68.0 60.2 43.1
Unet [21] 72.1 86.0 78.4 64.5

Deeplabv3 [26] 74.1 69.0 71.4 55.6
Deeplabv3+ [27] 71.3 78.8 74.9 59.8

MAPNet [45] 80.4 85.1 82.7 70.5
Res2-Unet [46] 74.9 85.3 79.8 66.3

Gated-SCNN [62] 73.8 87.1 79.9 66.5
BCANet [63] 76.7 86.0 81.1 68.1
BAMTL [65] 79.7 83.1 81.3 68.6
SBANet [66] 80.5 82.4 81.4 68.7

HDNet (ours) 82.7 84.8 83.8 72.1
For every test region, the highest values for different metrics are highlighted in bold.

Figure 6. Cont.
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Figure 6. The visualization results of the building extraction results from the WHU building
datasets and INRIA dataset. (a) original image; (b) ground truth (GT); (c) FCN [17]; (d) Deeplabv3;
(e) Deeplabv3+; (f) Res2-UNet; (g) BAMTL; (h) MAPNet; (i) HDNet (ours). Black, white, red,
and green pixels indicate the non-buildings, buildings, false alarm areas, and missed inspection
areas, respectively.



Remote Sens. 2022, 14, 1767 18 of 25

5. Discussion
5.1. Ablation Study

In order to better verify the effectiveness of each of the modules that were designed
for the proposed HDNet, several ablation studies were carried out on the WHU satellite
dataset, and the results are reported in Table 4.

Table 4. Ablation experiments for HDNet.

Methods
FDM

CFFM
Multitask

Supervision F1-Score (%) IoU (%)
FDM 2 FDM 3 FDM 4

Baseline 68.4 52.0
HDNet1 3 3 81.8 69.2
HDNet2 3 3 3 83.0 70.9
HDNet3 3 3 3 3 83.4 71.6

HDNet3,* 3 3 3 82.7 70.5
HDNet (our) 3 3 3 3 3 83.8 72.1

FDM 2, FDM 3, and FDM 4 indicate disentangling residual layer2, layer3, and layer4 from ResNet-50 by the
designed FDM, respectively; CFFM indicates that CFFM was used for dual-stream semantic feature description.
1, 2, 3 in HDNet indicate the number of FDM used in the ablation experiments. * indicates the method without
multitask supervision. For every test region, the highest values for different metrics are highlighted in bold.

In Table 4, the baseline method is based on Deeplabv3 [26] with some modifications.
Here, for a fairer comparison, similar to the proposed HDNet, ResNet-50 was employed as
the encoder in Deeplabv3 [26], and the last layer of ResNet-50 was upsampled by up to
four times, with the number of channels being compressed to 128 before being sent to the
ASPP module. It should be noted that the original convolutions of the ASPP module are
replaced by three parallel depth-wise atrous convolutions with atrous rates of 1, 2, and 5,
the same as HDNet. As shown in Table 4, HDNet1, which only uses the designed FDM for
semantic feature disentangling on residual layer 4, can obtain large improvements over
the baseline method, examples of which are the increase in the F1-score by 13.4% and the
increase in the IoU by 17.2%. Next, as more FDM modules are added to the residual layers
for hierarchical disentangling, the performance of the F1-score and IoU from HDNet1 to
HDNet3 was improved even further. Furthermore, from the comparison of HDNet3 and
HDNet3,*, it can be seen that the multitask semantic boundary supervision can facilitate
the description of weak semantic zone and can promote the final extraction performance of
the building. Finally, as shown in the last row of Table 4, after the CFFM module is added
to the dual-stream semantic feature description module of HDNet3, the final proposed
HDNet is able to provide superior performance compared to the other iterations.

Moreover, the PR and ROC curves were calculated from the WHU satellite dataset
and correspond to the ablation study and are shown in Figure 7. From the PR curve, it
can be seen that the proposed HDNet can create a better balance between precision and
recall and achieves a better overall performance. From the ROC curve, it can be seen that
by disentangling the semantic feature into strong and weak semantic zones, the proposed
method produces few false alarms.

5.2. Impacts of Supervision Labels Generation

In order to promote feature disentangling in the strong and weak semantic zones
to ensure the integrity of the bodies of the buildings and the accuracy of the building
boundaries, multitask supervision was performed in the training stage. Two of the auxiliary
supervision tasks include the supervision of the main bodies and semantic boundaries of
the buildings. The supervision labels in these two tasks are generated manually through
image erosion operations on the original building extraction labels. Specifically, the original
GT is eroded according to a certain number of pixels to obtain the label of the more
stable semantic main body. Since the semantic features of the semantic main body and
the semantic boundary are generated by feature disentangling, the supervision label of
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the semantic boundary can also be obtained by subtracting the supervision label of the
semantic main body from the original GT. Semantic boundary supervision labels with
different bandwidths can be obtained according to the number of eroded pixels, as shown
in Figure 8.

Figure 7. Analysis on the WHU satellite dataset. (a) PR curve; (b) ROC curve. 1, 2, 3 in HDNet indicate
the number of FDM used in the methods. * indicates the method without multitask supervision.

Figure 8. Building boundaries under different eroded pixel sizes. The image first is the ground
truth. The next five images are the different-sized building boundaries according to the size of the
eroded pixels.

Considering the possibility of feature misalignment between the semantic main body
features and the semantic boundary features, it is reasonable to discuss the impact of the
overlap between the semantic main body label and semantic boundary label. As such, two
types of experiments were conducted to explore the effect of the number of eroded pixels
on the overall performance depending on whether the boundary label and main body label
overlap. Within each set, a comparison of the different bandwidths was performed. The
evaluation results of the two sets of experiments are shown in Tables 5 and 6.
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Table 5. Experiments with overlapping semantic boundary and semantic main body labelling.

Methods Recall (%) Precision (%) F1-Score (%) IoU (%)

Edge 1 82.5 84.0 83.3 71.3
Edge 2 82.6 83.9 83.2 71.3
Edge 3 82.7 84.8 83.8 72.1
Edge 4 82.4 84.3 83.3 71.4
Edge 5 82.4 84.1 83.3 71.3

For every test region, the highest values for different metrics are highlighted in bold.

Table 6. Experiments with non-overlapping semantic boundary and semantic main body labelling.

Methods Recall (%) Precision (%) F1-Score (%) IoU (%)

Edge 1† 82.3 84.2 83.3 71.5
Edge 2† 83.0 83.7 83.3 71.5
Edge 3† 83.0 83.8 83.4 71.5
Edge 4† 82.7 84.4 83.5 71.7
Edge 5† 84.1 82.4 83.3 71.3

For every test region, the highest values for different metrics are highlighted in bold. † represents the methods
with non-overlapping semantic boundary and semantic main body supervision.

In Table 5, methods Edge 1 to Edge 5 represents the experiments in which the semantic
boundary supervision labels were obtained when the number of eroded pixels ranged from
one to five pixels. Note that the supervision labels of the semantic main body are fixed and
obtained by eroding the original GT by one pixel. Therefore, there are different degrees of
overlap between the semantic main body label and semantic boundary labels. As seen in
Table 5, the best building extraction performance is obtained when the number of eroded
pixels is three.

Furthermore, as reported in Table 6, in methods Edge1† to Edge 5†, each semantic
boundary and semantic main body supervision label was obtained when the number of
eroded pixels ranged from one to five pixels, and they are complementary without overlap-
ping. It can be seen that four pixels are a better setting to define the width of the uncertain
semantic boundary for multi-task supervision on this dataset. Additionally, the perfor-
mance of the overlapping supervision strategy is better than that of the non-overlapping
supervision strategy. This is because the overlapping supervision strategy can reduce
occurrences of missed extraction, and the overlapping part can play a complementary role
for the more stable semantic body and uncertain semantic boundary in building extrac-
tion tasks. This experiment also reflects the problem that semantic feature description for
buildings using feature disentangling is affected by the manually generated supervision
labels to some extent. Additionally, the influence will differ for buildings of different scales,
distribution densities, and surrounding interferences. Appropriate multi-task supervision
labels can promote feature extraction in the strong and weak semantic zones and can
facilitate the semantic description of uncertainty and reduce false alarms.

5.3. Generalization Ability of HDNet

Moreover, we also selected typical building extraction images from the WHU satellite
dataset to further evaluate the generalization performance of HDNet in different complex
scenarios. The selected sample images can be classified into three subsets according to
the statistics in Figure 1 in the introduction section. In order to verify the generalization
ability of HDNet for buildings with different scales, subset 1 selects typical images con-
taining large-scale and small-scale buildings. Additionally, to verify the generalization
ability of different spatial distributions, subset 2 selects typical images containing densely
distributed buildings and isolated buildings. Then, to verify the generalization ability
of different surrounding interferences, subset 3 selects typical images with occlusions,
shadows, and low contrast ratios. Additionally, the comparison results of the four SOTA
methods (i.e., Gated-SCNN [62], Res2-Unet [46], BAMTL [65], MAPNet [45]) are shown in
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Figure 9. It turns out that the proposed HDNet outperforms the other SOTA methods in all
three subsets.

Figure 9. Analysis of building extraction experiments in three subsets on the WHU satellite dataset.

In addition to the accuracy of the evaluation indexes, we further analyzed the number
of parameters, the FLOPs of the model, and the time used to infer each image during testing
to better explore the bounds of the proposed HDNet, as shown in Table 7. It can be seen
that while HDNet achieves the highest IoU on all of the selected sample images of different
complex scenarios, it has the minimum number of parameters, only slightly larger than
MAPNet [45]. The proposed HDNet method is an improved version of Deeplabv3 [26] and
Deeplabv3+ [27]. The total number of Deeplabv3+ parameters is 43.10 M, while the total
number of HDNet parameters is only 27.89 M because the proposed HDNet reduces the
number of feature channels. Moreover, the proposed HDNet is not only able to further
improve semantic feature description and generalization capabilities through the proposed
hierarchical disentangling strategy and dual-stream semantic feature description, it also
has acceptable parameters and inference times.

Table 7. Quantitative comparison of efficiency on the WHU satellite dataset.

Methods IoU (%) FLOPs (G) Parameters (M) Inference (s)

FCN [17] 48.7 80.5 15.31 0.032
Unet [21] 66.1 322.25 39.40 0.077

Deeplabv3 [26] 59.7 25.52 41.68 0.028
Deeplabv3+ [27] 62.3 25.66 43.10 0.029

MAPNet [45] 70.7 94.56 24.84 0.044
Res2-Unet [46] 68.6 67.99 43.68 0.046

Gated-SCNN [62] 66.5 755.43 137.27 0.136
BCANet [63] 69.4 192.76 44.95 0.056
BAMTL [65] 70.5 45.86 43.53 0.032
SBANet [66] 70.8 44.18 42.91 0.034

HDNet (ours) 73.3 33.48 27.89 0.053

In summary, the experimental results demonstrate the effectiveness and generalization
ability of the proposed hierarchical disentanglement strategy and dual-stream semantic
feature description in HDNet. It indicates that such a paradigm can avoid the risk of inter-
ference by introducing additional shallow features into the final fused semantic features to
balance the classification and localization performance during building extraction, some-
thing that is common in many encoder–decoder architectures. It can also elegantly prevent
the semantic gaps in multi-scale semantic features fusion from reducing the performance of
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fine-grained building extraction for multi-scale and arbitrarily distributed buildings. How-
ever, apart from a few annotation errors in the dataset, in extremely complex scenes with
dense building distribution, very small-scale buildings, and very low contrast, the range of
weak semantic regions where the semantic description of the buildings and backgrounds
intersect is difficult to define. In these cases, the proposed HDNet is slightly inadequate for
achieving a precise description of semantic uncertainty.

6. Conclusions

In this article, we consider the existing challenges in refined building extraction and
rethink the current semantic description paradigm. A novel hierarchical disentangling
network called HDNet is proposed for refined building extraction. Different from the
previous encoder–decoder algorithms that trade off the classification and localization
performance by fusing specific deep- and shallow-layer features, the proposed HDNet
sets up semantic description using a hierarchical disentangling strategy and dual-stream
semantic feature description that focus on describing the strong and weak semantic zones
of buildings individually and on achieving effective feature fusion for refined building
extraction. Extensive experiments were conducted on the WHU satellite/aerial and INRIA
building extraction datasets that further highlighted the advantages of HDNet. In summary,
the proposed model achieved the highest accuracy metrics on three datasets. In detail,
the proposed HDNet achieved an F1-score of 87.2% and an IoU of 77.3% on the INRIA
dataset; an F1-score of 95.0% and an IoU of 90.5% on the WHU aerial dataset; and an
F1-score of 83.8% and an IoU of 72.1% on the WHU satellite dataset. Note that the proposed
hierarchical disentangling strategy was able to improve the IoU by about 20% compared
to the baseline Deeplabv3 method in the experiments on the WHU satellite dataset. The
outstanding performance of HDNet suggests that describing the stable semantic main body
and uncertain semantic boundary separately is a better way to generate a more effective
sematic feature description than traditional deep- and shallow-layer feature fusion methods.
Considering the annotation errors in the datasets and the inadequate performance of the
uncertain semantic description in extremely complex environments, in future work, we will
continue to explore better modeling paradigms for stable and uncertain semantic feature
description in supervised or semi-supervised building extraction tasks.
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