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Abstract: Historical black-and-white (B&W) aerial images have been recognized as an important
source of information for assessing vegetation dynamics. However, the use of these images is limited
by the lack of multispectral information, as well as by their varying quality. It is therefore important
to study and develop methods that are capable of automatic and accurate classification of these
B&W images while reducing the need for tedious manual work. The goal of this study was to assess
changes over 30 years in woody vegetation cover along alpine treeline ecotones using B&W aerial
images from two time points. A convolutional neural networks model was firstly set up based on
three structure classes calculated from Airborne Laser Scanning data using the B&W aerial images
from 2010. Then, the model was improved by active addition of training samples of those that were
wrongly predicted from historical B&W aerial images from 1980. A comparison with visual image
interpretation revealed generally high agreement for the class “dense forest” and lower agreement
for the class “group of trees”. The study illustrates that vegetation changes at the treeline ecotone can
be detected in order to assess areawide long-term vegetation dynamics at a fine spatial resolution.

Keywords: convolutional neural network; historical black-and-white imagery; treeline ecotone;
woody vegetation change

1. Introduction

Assessing vegetation dynamics is indispensable in the context of climate change [1,2].
Further, alpine vegetation is considered especially vulnerable to warmer conditions [3–5].
Thus, vegetation changes at high elevations, e.g., treeline upward shifts and altered canopy
cover densities, play a key role in understanding carbon and energy budgets, plant species
richness, and habitat suitability [6]. As the occurrence of the natural treeline is predom-
inantly driven by climate, its exact position is a response to natural or anthropogenic
changes to the environment [7,8] and its spatial patterns contain information about the
processes that control treeline dynamics [9]. So far, dendro-ecological techniques [10] have
primarily been used to assess vegetation dynamics in treeline ecotones over time. Field plot
surveys and re-surveys [11] and the interpretation of aerial and historical aerial images [12]
are also approaches that have been applied occasionally.

Despite an overall increasing trend of using highly automated remote sensing tech-
niques in forest research [13], ecological modeling [14], and forest change detection [15],
their use in studies of treeline ecotones has been relatively limited. As reported by
Morley et al. [8], the assessment of changes in treeline ecotones has generally been based
on either aerial images or multispectral satellite images, and only recently on Airborne
Laser Scanning (ALS). For example, Resler et al. [16] used digital aerial images and texture
analysis to map alpine ecotones in Montana, USA. Hill et al. [17] used SPOT 5 images
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in Austria to map five intermediate vegetation classes. Morley et al. [8] used structural
information obtained from images of multispectral satellites to estimate changes in treeline
across the Central Mountain Range, Taiwan. Næsset and Nelson [18] used ALS data to
assess tree migration in the boreal–alpine transition zone. Finally, Bolton et al. [6] used a
combination of Landsat time series and ALS data to locate and characterize alpine treeline
ecotones in the Yukon Territory of Canada in order to determine which vegetation structural
classes experienced the greatest greening trends over a 30 year period from 1985 to 2015.
The overall aim of these studies was to assess the current state of treeline ecotones or their
change using a rather low-resolution satellite image.

Long-term dynamics of up to 30 years at coarse spatial resolution have been assessed
using satellite time series data, in particular the Normalized Difference Vegetation Index
(NDVI). For example, long-term greening or browning trends of vegetation in a temperate
alpine ecotone in the French Alps have been modeled using MODIS and Landsat data [19],
and vegetation dynamics and phenology have been assessed in the Himalayas using
NOAA-AVHRR and Landsat [20] and in the Tibetan Plateau using Landsat time series and
auxiliary data [21].

Plant ecologists have long recognized the importance of aerial images as a data
source for studies of vegetation dynamics [22]. In particular historical black-and-white
(B&W) aerial images provide important records of past landscapes and have been suc-
cessfully used in land cover change applications, e.g., in studies of urban areas [23], the
cryosphere [24,25], wetland ecosystems [12], and pine and grassland ecotones [26]. Al-
though aerial images have been used in many studies (e.g., those listed), their use is still
considered relatively limited.

The reasons for the limited use of historical aerial images in the analysis of past
vegetation dynamics are manifold and are related to the following: (1) the time-intensive
image processing (scanning and enhancing); (2) their varying geometric (i.e., distortion,
tilting, orientation) and radiometric (i.e., noise, artefacts, shadows) quality; and (3) missing
multispectral information, in particular the Near-infrared (NIR). Since the extraction of
objects of interest has mainly been based on visual image interpretation rather than image
analysis techniques, these limitations have a direct impact on past vegetation analysis.
Moreover, visually interpreted vegetation characteristics might not be objective [22], and
digitized shapes are less complex and more generalized than remotely sensed features [27].

Recent progress in computer vision and technology, i.e., Artificial Intelligence (AI),
and the improved availability of large data sets, such as large historical image archives,
have opened up new research possibilities. In the last decade, machine learning techniques
have become increasingly important in data-intensive science. In particular, Deep Learning
(DL) is the fastest-growing trend in big data analysis. With this approach, features can
be represented through learning exclusively based on data, using neural networks (NNs),
instead of features being handcrafted based mainly on domain-specific knowledge. DL in
general has been widely used in forestry applications, e.g., in tree cover mapping [28] and
forest structure mapping, i.e., regarding tree species composition [29,30] and tree micro-
habitats [31]. Specifically, Convolutional Neural Networks (CNNs) enable the extraction of
mid- and high-level abstract features from raw images by interleaving convolutional and
pooling layers, representing a state-of-the-art approach to image classification and segmen-
tation [32,33]. CNNs have also been frequently used in vegetation remote sensing [34].

In Switzerland, historical aerial images are available from as early as 1926, but with
varying scale, quality and area coverage. In the context of the Swiss land-use and land-
cover statistics, the Federal Office of Topography (swisstopo) has scanned and oriented the
analogue B&W stereo aerial photographs of the nationwide flights from 1979–1984 and
1993–1997. The true-color RGB image data from the period 1998–2007 was scanned for the
production of the orthoimage ‘swissimage’ by swisstopo. Since 2008, repeat countrywide
digital aerial RGBI stereo images have been acquired by swisstopo on a three-year cycle.
Thus, a comparison of these recent images with historical B&W images enables a continuous
assessment of vegetation cover change over an increasing time span. Additionally, ALS



Remote Sens. 2022, 14, 2135 3 of 22

data since 2001 with varying point density (0.5 to 60 points per m2) is available for the
whole country. ALS data in particular has the potential to capture a range of vegetation
structural metrics, e.g., vertical structure and height. A continuous assessment of vegetation
cover change at a high spatial and temporal resolution might become feasible by combining
repeat aerial images and ALS data.

The aim of this study was to detect changes in woody vegetation along alpine treeline
ecotones over 30 years from 1980 to 2010 using the three vegetation structure classes “dense
forest”, “group of trees”, and “other” in two study areas in the Swiss Alps. Specifically,
we considered the following questions: (1) How did the vegetation patterns change along
the treeline ecotones over 30 years? (2) Can woody vegetation structural classes be well
characterized by using historical B&W aerial images? (3) Did ALS data from recent years
meet the requirements for selecting appropriate training data? (4) What is the perfor-
mance of using DL approaches for historical aerial image classification with remarkable
radiometric differences?

We applied a DL approach that uses historical B&W aerial images (from 1980) and
B&W images from RGB aerial images from two recent time points (2009, 2010) to distinguish
between the three vegetation structure classes. The proposed method involves a CNN
model that is based on active training using the recent and historical aerial images. The
comparison of the vegetation classifications in recent and historical time points makes
it possible to assess changes in vegetation cover over time for the two study areas. This
information is essential for assessing dynamics of treeline ecotones and structural shifts.

2. Materials and Methods
2.1. Study Areas

Switzerland is located in central Europe covering and its area belongs two third to
the alpine Arc. The climate depends on the altitude (range between 193 m and 4634 m
a.s.l.) but overall is moderate with no excessive heat, cold, or humidity. Based on floristic,
faunistic, and geographic patterns, six biogeographic regions can be defined: (1) Jura;
(2) Central Plateau; (3) Northern Alps; (4) Western Central Alps; (5) Eastern Central Alps;
(6) Southern Alps.

In the present study, two study areas (red boxes in Figure 1) of the Swiss Alps were
selected. Study area 1 is located in the subalpine and alpine zones of the Bernese Oberland
(7◦23′43′ ′E, 46◦29′20′ ′N) and belongs to the biogeographic region of the Northern Alps. It
has an elevation ranging from roughly 935 to 2500 m a.s.l., and covers an area of approx.
28 km2. Precipitation is frequent and there can be a closed snow cover, depending on
the elevation and exposition, during the winter half of the year. The forest ecosystem
is characterized by mixed dense broadleaved trees in the valleys and coniferous trees at
higher elevations. The upper treeline ecotones consist of areas with dense and partly
open coniferous forest and a treeline at approx. 1800 m a.s.l. Between this treeline and
the alpine grasslands, shrubs, mostly dwarf mountain pine (Pinus mugo Turra) and green
alder (Alnus viridis (CHAIX) DC.), and a few individual trees grow up to an elevation of
2200 m a.s.l. The study area has been partly managed and the tree species composition
mainly includes European beech (Fagus sylvatica L.), European ash (Fraxinus excelsior L.),
European white fir (Abies alba Mill.), and Norway spruce (Picea abies (L.) H. Karst), with
typical broadleaved and softwood species growing along rivers and streams.

Study area 2 is located in the southern part of the Swiss Alps in the canton of Ticino
(9◦4′11′ ′E, 46◦23′21′ ′N) and belongs to the biogeographic region of the Southern Alps. It has
an elevation ranging from roughly 820 to 2900 m a.s.l., and covers an area of approx. 20 km2.
Precipitation and snow cover are similar to in study area 1. Forests are less managed, and
the upper treeline is less distinct than in study area 1, with a high diversity of tree and
shrub species. The upper treeline ecotones consist of dense and partly open coniferous
forest and a treeline at approx. 2100 m a.s.l. Shrubs, again, mostly dwarf mountain pine
and green alder, grow up to an elevation of 2400 m a.s.l., between the treeline and the alpine
grasslands. The main tree species are European larch (Larix decidua Mill.) and Norway
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spruce, with dwarf mountain pine and broadleaved dominant species along the rivers in
the valleys.
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Figure 1. Shaded relief of Switzerland with the locations of the two study areas (red boxes) in the
Bernese Oberland (study area 1) and Ticino (study area 2). The number represents biogeographical
regions of Switzerland: (1) Jura; (2) Central Plateau; (3) Northern Alps; (4) Western Central Alps;
(5) Eastern Central Alps; (6) Southern Alps.

2.2. Data Sets
2.2.1. Aerial Images

In the present study, aerial images from two different time points were used for both
study areas. For the first time point (Img_T1), historical analogue B&W aerial stereo
images from the aerial camera RC10 (Wild Heerbrugg, today Leica Geosystems, St. Gallen,
Switzerland) were scanned with a Leica DSW700 scanner. The initial purpose of the image
acquisition was to update the topographic maps obtained from swisstopo. These images
were acquired in 1980, have an average scale of ~1:30,000, and were scanned at a resolution
of 14 µm (this corresponds to approx. 0.35 m spatial resolution). The aerial images were
absolute oriented and the digital terrain model SwissAlti3D from swisstopo was used for
the orthorectification. For the second time point (Img_T2), grayscale images were produced
from digital RGBI aerial images acquired by swisstopo using a Leica ADS40 sensor with
spatial resolution of 0.25 m. For study area 1, the images were taken on 9 August 2010, while
the date was 6 September 2009 for study area 2. All orthoimages for the following analyses
were resampled and had a resolution of 0.25 m. Figure 2a,b shows the corresponding B&W
images of the two time points for the two study areas.

2.2.2. ALS Data and VHM

Airborne Laser Scanning (ALS) data, acquired in 16 June 2013, were used for study
area 1 since it was closest to the acquisition of the aerial images. The ALS data were
collected partly leaf-on/leaf-off with a point density of 20 points per m2. From this data
set, a normalized Digital Surface Model (nDSM) was generated. Buildings were removed
using the building footprints Topographic Landscape Model (TLM) from swisstopo. This
made it possible to generate a Canopy Height Model (CHM) (Figure 3).
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in the Bernese Oberland (center coordinates 7◦23′43′ ′E, 46◦29′20′ ′N). (b) B&W aerial images (top
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2.3. Data Processing
2.3.1. Image Patches

Prior to setting up the CNN models, a regular grid of 50 m mesh size was generated
for both study areas (Figure 4). From these grids, patches of 200× 200 pixels were extracted
from the B&W aerial images (spatial resolution of 0.25 m) from both time points. This was
considered beneficial because the image patches were then equally sized, and no resizing
operation was needed for the CNN model input. These patches did not overlap and could
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be considered spatially independent images that included all in-class and between-class
variability of the three target classes “dense forest”, “group of trees”, and “other”. Moreover,
the distinction between these three classes per image patch was facilitated by calculation of
the vegetation cover proportional ratio (more detail can be found in Section 2.3.2) using the
Vegetation Height Model (VHM) generated from ALS point cloud data.
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2.3.2. Forest Structure Classes

Forest structure classes were determined based on ALS data. The three structure
classes “dense forest”, “group of trees”, and “other” were defined based on percentage of
Canopy Cover (CC) values and two different height classes. For this step, two classes of
height and several classes of percentage of CC were calculated per grid cell (see Table 1).

Table 1. Definitions of the three vegetation structure classes “dense forest”, “group of trees”, and
“other” based on Canopy Cover (CC) percentage and height, as extracted per 50 × 50 m image patch.

Structure Class Description

Dense forest >20% CC height value of pixels >5 m

Group of trees 2–20% CC height value of pixels >5 m and
<5% CC height value of pixels 3–5 m

Other
(1) <2% CC height value of pixels >5 m and >5% CC height value
of pixels 3–5 m
(2) <1% CC height value of pixels 3–5 m

The selection of the two height classes was based on the focus on changes in treeline
ecotones. Vegetation smaller than 3 m in height was excluded. The first class includes CC
percentages for all pixels greater than 5 m height and the second class includes the CC
percentage for all pixels in the height range of 3–5 m. Figure 5a–c shows the two height
classes of percentages of CC for study area 1.
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2.3.3. Data Labelling

Based on the definitions described in Table 1, the 50 × 50 m image patches from
Img_T2 for both study areas were extracted separately and labeled with the corresponding
class. These labeled image patches were then taken as the first candidate sets for each class.
Then, an active interaction was manually added to remove irrelevant data. Figure 6 shows
an example of how cleaning was applied to the training data set of the first candidates,
where the green color indicates the pixels with h > 5 m. This was a candidate for the class
“dense forest” based on the definition in Table 1, but it can be predicted by CNNs model as
the “group of trees” class. Figure 7 shows examples of image patches of the three classes
that were used as training data.
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2.4. Training and Validation Data
2.4.1. Training Data

In contrast to time point 2 (images from 2009 and 2010), no corresponding CHMs were
available for time point 1 (images from 1980) in the present study. Thus, the initial idea
was to use the images from time point 2 that were labeled using CHMs for model training
to predict images from Img_T1 (1980). Usually, more precise predictions are achieved if the
training data are representative of the underlying distributions. However, there were large
differences between Img_T1 and Img_T2 for both study areas because of different image
acquisition conditions and techniques. In order to improve the adaption of the CNN model
for the historical aerial images, an interactive approach was set up to generate the training
data. Image patches (Img_T1) with incorrect predictions from the initial trained model
were actively added and extracted into the training data set and the model was re-run. This
procedure consisted of four main steps:

1. Generation of the first training (80%) and validation (20%) data set using Img_T2 from
study area 1. The data labeling was conducted based on the CHM obtained from ALS
data and the CC percentage of each image patch;

2. Model training and prediction based on the first available data set for Img_T1 of study
area 1 and for Img_T1 and Img_T2 of study area 2;



Remote Sens. 2022, 14, 2135 9 of 22

3. Interactive addition of all image patches (80% for training, 20% for validation) that
were wrongly predicted into the model to increase the model’s generalization;

4. Re-running of the model training. At the end, for the first-level training data set
(CNN1), there were 11,932 image patches from Img_T2 in study area 1, 227 image
patches from Img_T1 in study area 1, 330 image patches from Img_T1 in study area 2,
and 60 image patches from Img_T2 in study area 2. Since sufficient training data for
the class “group of trees” were not available, we added augmented image patches,
e.g., the mirrored images with vertical and horizontal flips, to this class. After these
steps, we used 6892 image patches for the class “dense forest”, 2519 image patches for
“group of trees”, and 6509 image patches for “other”.

2.4.2. Independent Validation Data

The predictions from the CNN models were evaluated using visual image interpre-
tation of patches from both time points. For this, the interpretation of the image patches
was carried out on an equal interval sampling grid (Figure 8) for the three classes “dense
forest”, “group of trees”, and “other”. In total, 3845 image patches (10%) of study area 1
and 1581 image patches (20%) of study area 2 were interpreted in order to avoid exceeding
heavy manual workload.
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2.5. Methods
2.5.1. Overview of the Classification Approach

The workflow of the classification approach is given in Figure 9 and consisted of five
main steps:

1. Calculation of Canopy Cover (CC) percentage from CHMs obtained from the ALS
point data from 2010 (Img_T1) in study area 1 and active interaction and labeling of
each potential image patch (50 × 50 m);

2. Training using a hierarchical Convolutional Neural Network (CNN) using the infor-
mation on the labeled image patches;

3. Classification of images from 1980 (Img_T1) from study area 1 and from 1980 (Img_T1)
& 2009 (Img_T2) from study area 2 based on trained CNNs;

4. Active addition of training samples from wrongly predicted image patches, e.g.,
predicted as class “other” instead of “group of trees”.

5. Evaluation of the change in forest cover between the two time points.
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2.5.2. AlexNet

In the present study, two CNNs were trained based on a pre-trained AlexNet CNN.
The AlexNet is capable of solving the problem of general image classification for realistic
objects over a large data set [35]. The network consists of eight layers: five convolutional
layers (some of them are followed by max-pooling layers), two fully connected layers, and
one fully connected output layer (Figure 10). Moreover, it involves a dropout technique
with a dropout rate of 0.2 to prevent overfitting after each fully connected layer. An
averaged stochastic gradient descent (ASGD) optimizer was selected because of its superb
performance [36]. Each CNN was trained over 30 epochs using a batch size of 64 that
was maintained across all networks. We used a learning rate of 0.01 in the optimization
process, and we used Rectified Linear Unit (ReLU) as the activation function. Moreover,
the cross-entropy cost function was applied as a loss function.
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2.5.3. Hierarchical Classification Strategy

In this study, to distinguish between the three classes “dense forest”, “group of trees”,
and “other”, two binary classification models were trained. First, a CNN (CNN1, see
Figure 9) was trained to distinguish “vegetation” from other land cover, where “vegetation”
was an aggregated class including “dense forest” and “group of trees”. Then, another
CNN (CNN2, see Figure 9) was trained to separate the classes “dense forest” and “group
of trees”. The final classification results were based on these two CNNs. The idea behind
this hierarchical classification approach was that most of the traditional CNN-based clas-
sifications are so-called “flat classifiers” with an underlying assumption that all classes
are equally difficult to distinguish [37]. Traditionally, the CNN network learns to extract
relevant features and to classify such images. This trained model was then used to classify
unlabeled image patches. In these training steps, all the training data are represented in the
network during the same training process. However, visual separability between different
object categories is highly uneven in the real world, which means that we rarely have all
the information at once. Important information may become lost if the natural hierarchy of
the data is ignored. Since we had to deal with shared characteristics among the classes, we
first merged them based on these characteristics and exploited their relationships (step 2
in Figure 9).

2.5.4. Adjusting Historical Images

In the present study, greyscale images from 2010 were used to train the models and
then the prediction was implemented to the historical B&W images from 1980. Differences
between the images from two time points include image resolution, contrast, illumination,
and texture. These differences may result in the wrong prediction because of the unlike
distribution of training and test data. In order to minimize the bias affected by the different
conditions between the training and testing stages, intensity values for the historical B&W
images were first adjusted (see Equation (1)). If I is the image and f (x,y) indicates the gray
value of I at position (x,y), then the adjusted gray value can be calculated as follows:

f (x, y)adjust = ( f (x, y−min(I))/(max(I)−min(I)) (1)

2.5.5. Disagreement Analysis

As the occurrence of trees depends on several factors, e.g., directly by soil, topography,
and climate and indirectly by elevation, a disagreement analysis was carried out that was
based on elevation classes. Prior to this, a normalization using 200 m steps (e.g., elevation
category 800–1000 m a.s.l.) was applied over the elevation range of 800–3000 m a.s.l.

For the ith elevation category, we let Nt,i be the total number of image patches,
NCNN-denseforest,i the number of the image patches predicted as the class “dense forest”
by the CNN, and NCNN-interpretation-denseforest,i the number of image patches confirmed as the
class “dense forest” by the CNN and visual image interpretation. We used the follow-
ing definitions:

RCNN−dense f orest,i = NCNN−dense f orest,i/Nt,i (2)
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RCNN−interpretation−dense f orest,i = NCNN−interpretation−dense f orest,i/Nt,i (3)

Then, with Ψ = ∑
i

RCNN−dense f orest,i, the normalized ratio can be calculated as follows:

ρCNN−dense f orest,i = RCNN−dense f orest,i/Ψ (4)

ρCNN−interpretation−dense f orest,i = RCNN−interpretation−dense f orest,i/Ψ (5)

Therefore, the disagreement between the CNNs and visual image interpretation can
be calculated as follows:

DCNN−dense f orest−users,i = ρCNN−dense f orest,i − ρCNN−interpretation−dense f orest,i (6)

DCNN−dense f orest−users,i reflects the agreed difference between the number predicted by
the CNN and the agreed number from both the CNNs and visual image interpretation based
on the size of the elevation category. This measured difference is DCNN−dense f orest−users,i and
is similar to the user’s accuracy. By the same procedure, Dinterpretation−dense f orest−producers,i re-
flects the agreed difference between visual image interpretation and the agreed number of the
CNN and visual interpretation. This measured difference is Dinterpretation−dense f orest−producers,i
and is similar to the producer’s accuracy.

3. Results
3.1. Classifications

The maps of the three classes “dense forest”, “groups of trees”, and “other” for both
study areas are shown in Figure 11 (study area 1) and Figure 12 (study area 2).

Figure 11 clearly shows that in study area 1 the class “dense forest” has increased
overall, although selective forest management has been carried out within the 30 years. In
contrast, the class “groups of trees” has decreased, in particular along the upper treeline.
This decrease in shrub and trees is most probably due to an increase in the cultivation of
pastures and meadows.

Figure 12 illustrates that the class “dense forest” has increased in some parts of study
area 2. Moreover, the class “groups of trees” has increased in some parts, in particular
along the upper treeline. This is typical for regions in the Southern Alps, in which only very
selective forest management is carried out, which, together with less cultivated pastures,
enables shrub encroachment.

Table 2 shows the agreement for the three classes “dense forest”, “group of trees”,
and “other” between the model predictions and visual image interpretations for the two
study areas. For the agreement, all the training image patches were excluded. For study
area 1, most of the training patches were taken from Img_T2 (2010), and so no agreement
assessment was carried out. The lowest overall agreement (0.80) was achieved when image
patches from 1980 were used for study area 2. A similar overall agreement was obtained
in study area 1, with 0.85 for image patches from 1980, and in study area 2, with 0.84 for
image patches from 2009.

The highest agreement (0.97) (user’s agreement) was obtained for the class “dense
forest” in study area 2 using image patches from 2009. In contrast, the lowest (producer’s)
agreement (0.27) was obtained for the class “group of trees” in study area 2 using image
patches from 1980. In general, higher agreement was obtained for the classes “dense forest”
and “other” than for “group of trees”. Table 3 shows the agreement in study area 1 based
on image patches from 1980 when only a single CNN model was used (non-hierarchical)
and when both CNN1 and CNN2 (hierarchical) were used. Both were directly trained with
the three classes and using the same training data for each class. The comparison indicates
that higher agreement can be achieved when the hierarchical classification is used.
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Table 2. Agreement between classification and visual image interpretation for the three classes “dense
forest”, “group of trees”, and “other”. Note that in study area 1 image patches from 2009 were used
as training data and were therefore excluded from the agreement analysis.

Class Agreement Study Area 1 Study Area 2

Img_T1 (1980) Img_T1 (1980) Img_T2 (2009)

Dense forest
User’s agreement 0.94 0.83 0.97
Producer’s agreement 0.89 0.95 0.88

Group of trees User’s agreement 0.67 0.47 0.51
Producer’s agreement 0.60 0.27 0.30

Other
User’s agreement 0.83 0.83 0.76
Producer’s agreement 0.94 0.84 0.95

Overall agreement 0.85 0.80 0.84
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Figure 12. Classification result for study area 2 for time point T1 (images from 1980) (top) and time
point T2 (images from 2009) (bottom). The class “other” belongs to the background areas and is not
colored. The colored classification results are overlaid on the B&W aerial images for T1 and T2.

Table 3. Overall user’s and producer’s agreement between classifications either with or without
hierarchy and visual image interpretation for the three classes “dense forest”, “group of trees”, and
“other”. Note that in study area 1 image patches from 2009 were used as training data and were
therefore excluded from the agreement analysis.

Class Agreement Study Area 1
Img_T1 (1980)

Hierarchical CNN Non-Hierarchical CNN

Dense forest
User’s agreement 0.94 0.83
Producer’s agreement 0.89 0.88

Group of trees User’s agreement 0.67 0.67
Producer’s agreement 0.60 0.53

Other
User’s agreement 0.83 0.78
Producer’s agreement 0.94 0.83

Overall agreement 0.85 0.79

3.2. Disagreement Analysis

Figure 13 shows the disagreement graphs for the class “dense forest” for each elevation
category. The results are clustered based on the two time points, i.e., 1980 and 2009, for study
area 2. The normalized variable D (measured differences) and variable ρ are stacked into
one bar. Based on the definition of disagreement (see Section 2.5.5), the smaller the height
of variable D compared with the normalized variable ρ (normalized ratio), the higher the
agreement between predictions based solely on CNNs and visual image interpretation.
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Figure 13. (a) User’s disagreement for the class “dense forest” (b) Producer’s disagreement for the
class “dense forest”. Disagreement values (ρCNN, DCNN, ρ interpretation, Dinterpretation) are from both
dates (1980, 2009) for each elevation category in study area 2. The circle shows that some image
patches were not classified as “dense forest” compared with visual image interpretation.

In Figure 13, a shorter length for variables DCNN-denseforest-users and Dinterpretation-denseforest-producer
shows a better match between the classification and visual image interpretation for the
elevation ranges between 1200 and 2000 m a.s.l. It also shows that some image patches were
not classified as “dense forest” (indicated with the circle) compared with visual image inter-
pretation, especially for Img_T1 (1980) in the elevation ranges between 800 and 1200 m a.s.l.
The relatively longer length of variable D in both time points indicates a generally higher
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disagreement for higher elevation categories. The reason for this might be the relatively
small number of image patches of the class “dense forest” that were visually interpreted.

3.3. Vegetation Change Depending on Elevation

Figure 14 illustrates the distribution of the predicted image patches of the class “dense
forest” along the normalized elevation categories for the two time points in the two study
areas. The different changes suggest different pattern changes in the class “dense forest”
between study areas 1 and 2. While for study area 1 there was a general increase in the
“dense forest” class in most elevation categories, for study area 2, a decrease in the “dense
forest” class was found in higher elevation categories. The distributions are relatively
similar for the two time points for elevations lower than 2000 m a.s.l.
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Figure 14. Distribution of the class “dense forest” between images from 1980 (study areas 1 and 2)
and from 2009 (study area 2) and 2010 (study area 1) based on normalized elevations. (Top panel):
study area 1, (bottom panel): study area 2.

4. Discussion
4.1. General Aspects of the Proposed Method

The present study confirms the suitability of CNNs in combination with B&W aerial
images for assessing changes over 30 years in alpine upper treeline ecotones using the three
vegetation structure classes “dense forest”, “group of trees”, and “other”. A comparison
with visual image interpretation revealed general high agreement for the class “dense
forest” and lower agreement for the class “group of trees”.

The use of CHMs based on ALS data substantially reduced the workload for the
selection of appropriate training data. In particular, interactive addition of wrongly pre-
dicted image patches from time point T1 (1980) resulted in overall improvements to the
models, and the adapted models were beneficial for images of time point T1. The use of
radiometrically adjusted images as the input for model prediction substantially minimized
data shift problems between the two time points.

The two main advantages of the interactive steps are: (1) little manual work was
needed for the selection of training data since the focus was placed on incorrectly predicted
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image patches only; (2) adding image patches from time point 1 (1980) increased the correct
classification rates of the models.

A reliable interpretation of the classification comparison was possible by analyzing
per class disagreement between the classification models and visual image interpretation
of 5426 image patches. Nevertheless, the lowest agreement was obtained for the class
“group of trees”, and the use of this class is only partly satisfactory. In comparison to
other commonly used CNN approaches for land cover classifications on recent remote
sensing data, our approach using historical aerial images was less effective. The key task of
CNNs, to obtain representative features from image objects during training, was limited to
a certain degree since historical images only provided a single band.

The use of single-band B&W images was challenging for images from all dates
(1980 and 2009, 2010) and occurred during model training and prediction. The main reason
was the heterogeneity of the image patches (between Img_T1 and Img_T2) regarding image
quality and properties, i.e., spectral distortion, brightness, and contrast.

4.2. Performance Differences between “Dense Forest” and “Group of Trees”

In this section, the disagreement between the CNNs and visual image interpretation is
discussed. A potential source of disagreement is related to the image distortion of historical
B&W images (Img_T1).

Figure 15a illustrates this disagreement and shows the different qualities of the B&W
images. The blue-green boxes show image patches that were both correctly classified
as “dense forest” and confirmed by visual image interpretation. In contrast, the red box
shows an image patch from 1980 (Img_T1) with disagreement for the two classes “dense
forest” (obtained by visual image interpretation) and “group of trees” (obtained by the
CNN models). Figure 15b illustrates agreement for the class “dense forest” obtained by the
CNN classification and visual image interpretation when using images from 2009 (Img_T2).
Figure 15 indicates that although CNNs have a certain degree of generalization ability, they
are not able to achieve satisfactory classification results on different source images in the
case of large differences in acquisition conditions.
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Figure 15. (a): Img_T1 (1980) and (b): Img_T2 (2009). Disagreement of the class “dense forest”
between the CNN and visual image interpretation due to image distortion in study area 1. While
blue-green image patches correspond to agreement of the class “dense forest”, red image patches
correspond to disagreement.

Another potential source of disagreement is related to the unclear boundary for the
semantic concept definition of the three classes. Class definition might be used differently
in CNNs and in visual image interpretation. Figure 16 shows an image patch (from Img_T1)
with disagreement between the two classes “group of trees” (obtained by CNNs) and
“dense forest” (obtained by visual image interpretation).
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Figure 16. Disagreement of the class “dense forest” obtained by CNNs and visual image interpretation
due to an unclear boundary of the semantic concept definition. Blue-green image patches correspond
to agreement for the class “dense forest” and red image patches correspond to disagreement.

Moreover, disagreement between CNN and visual image interpretation also occurred
for image patches that contained very small trees where the same tree was not always
recognized by the CNNs. Figure 17 illustrates that CNNs classified some image patches as
“other”, while they were assigned to “group of trees” by visual image interpretation.
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The present study reveals that, overall, disagreement between CNNs and visual image
interpretation was more pronounced for study area 2 than for study area 1. This might also
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be related to the fact that study area 1 is in the southern Swiss Alps and is characterized
by a higher variability of forest structure and very little forest management. As a direct
consequence of the disagreement, relatively poor user’s agreement was obtained as well,
e.g., 32% user’s agreement for images acquired in 2009. In our study, we assume that visual
image interpretation was more robust due to the extensive experience of the interpreters.
Thus, the smaller the difference between classes, the more pronounced the divergence
between human and CNN classification.

A couple of studies [38,39] have indicated that CNN models tend to exhibit lower
performance when the object in the scene is far away. Therefore, we emphasize that
the difference between our classification models and visual image interpretation is a
disagreement rather than an absolute classification error.

4.3. Impacts on Classification

Factors that impacted classification can be summarized as follows:
The first factor is related to image quality, such as lighting, distortion, scale, and blur,

which had a direct impact on the classification and was partly solved by adjusting images
accordingly. The second factor is related to the differences between the three classes “dense
forest”, “group of trees”, and “other”, which were relatively large and were the reason
for a higher user’s and producer’s agreement for the class “other”. The third factor is
related to the problem of the initial fine-grained classifications and the differences between
visual image interpretation and classification algorithms. Thus, a class might be differently
interpreted and defined by humans than by CNNs, which use abstract definitions based
on functions. This makes it more difficult for classification models to understand the
classified objects.

In the present study, definitions of the three classes were formed using the structure
information from the ALS point cloud data with several predefined thresholds. To a certain
degree, this might be the reason for blurred class differences and disagreements (Figure 16).
As [40] pointed out, human visual object recognition is typically and largely independent
of the viewpoint and object orientation. They concluded that marked differences in the
way humans and current CNNs perform visual object recognition may still remain.

4.4. Forest Cover Change Per Elevation Category

While in study area 1, the changes between 1980 and 2010 mainly occurred in parts
within large forest areas, always below the upper treeline, in study area 2, the changes ad-
ditionally occurred near the treeline ecotones. The class “dense forest” generally increased
in most elevation categories in study area 1. In contrast, the same was only found in higher
elevation categories in study area 2. Moreover, the forest structure in the treeline ecotones
of study area 2 seems to have become more diverse, in particular in the transition zones
between shrubs, single trees, and dense forest.

There are several possible reasons for these differences. First, they might be related
to the different biogeographical regions (Figure 1) of the two study areas, with different
climatic conditions and vegetation composition having a direct impact on forest structure.
Tree species composition of the two study areas also differs. While in both study areas the
proportion of coniferous tree species increases with increasing elevation, broadleaved tree
species are more dominant in study area 1, which has generally lower elevations. Together
with active forest management in study area 1 and little forest management in study area 2,
this might be the main driver for the establishment of different conditions in these treeline
ecotones. Thus, different patterns of forest change can be observed for the two study areas,
depending on the elevation category (Figure 14).

4.5. Future Work

Historical B&W aerial images serve as a valuable source of information for studying
past land cover and land use and their change to a certain degree. However, as their
quality is limited and the information is provided in a single band, their use in classifying
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natural objects such as trees and forests remains challenging. Thus, future research should
also include texture information [41,42]. Texture information from images is an important
characteristic, as it is a function of spatial variation in pixel intensity [43]. Additional
information about the structural arrangement of objects and their relationship with respect
to their local neighborhoods will be beneficial and increase the inter-class distance between
“dense forest” and “group of trees”.

It is well recognized that a large data set of high-quality training data is needed for
machine learning and DL approaches. In our study, we experienced a probable conceptual
gap between the interpreter and the classification models. Human visual perception is
much more robust than that of CNN models because human visual perception is not simply
function mapping but has evolved over a long period and incorporates various factors,
such as target detection, background filtering, association, decision making, and reasoning,
intertwined in a very fine intelligent system [44]. Thus, migrating cognitive power to
CNNs remains challenging. Therefore, a promising approach would be to include findings
from Deng et al. [45] on integrating the model with human knowledge. For example, [46]
successfully implemented a human cognitive model to reduce the gap between human
beings and machines in this type of inference by utilizing cognitive biases. The proposed
method is promising and will be applied to larger areas. Thus, changes in treeline ecotones
could be assessed for entire countries and help to reconstruct and better understand forest
changes over the last decades at a high spatial resolution.

5. Conclusions

Historical B&W aerial images are a valuable source of information to unveil landscapes
in the past and reconstruct changes up to the present. In this paper, we demonstrate that
changes over 30 years in woody vegetation cover along Alpine treeline ecotones can be
assessed for two different biogeographic study areas with different managements in the
Swiss mountains. A CNN-based classification approach was set up for the three categories
“dense forest”, “group of trees”, and “others”, using recent ALS data for the selection of
appropriate training data. The study shows the benefits of actively trained CNNs using
hierarchical strategies. While generally encouraging results were obtained, visual image
interpretation revealed high agreement for “dense forest” and lower agreement for “group
of trees”. Sources of disagreements were related to image distortion and problems with
short trees. With the proposed method, the assessment of high-resolution, long-term
vegetation dynamics at tree line ecotones became feasible and is very promising for area-
wide applications. The additional use of texture information in future studies might further
increase the inter-class distance between “dense forest” and “group of trees”.
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