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Avocado (Persea americana) is a crop that is second in importance in Florida behind citrus with awholesale value
of $35million and represents approximately 60% of the tropical fruit crop acreage. Laurel wilt (LW) is a lethal dis-
ease that has spread rapidly along the southeastern seaboard of the United States affecting commercial avocado
production. This article evaluates the spatial and spectral requirements for quick and accurate detection of LW.
Spectral data from healthy (H), Phytophthora root rot (PPR) and LW leaves were analyzed using ANOVA and
two neural networks, multilayer perceptron (MLP) and radial basis function (RBF). The most effective wave-
lengths were identified and the filters were updated to a MCA-6 Tetracam camera (580–10 nm, 650–10 nm,
740–10 nm, 750–10 nm, 760–10 nm and 850–40 nm). Then, theMCA camera was used to take multispectral ae-
rial images from a helicopter at three altitudes (180, 250 and 300 m) in an avocado field with trees at different
stages of LW development, early, intermediate and late. The analyses were conducted based upon 2-class and
4-class systems. The 2-class system was designed to differentiate H and LW trees sufficient to identify trees for
removal and the 4-class systemwas used to differentiate H plants and the three stages of LWdevelopment. Aerial
image analysis proved the utility of the selected filters for successful identification of LW, even for trees in early
stage of disease developmentwithminimal symptoms. The ideal flight altitude of 250m (15.3 cm pixel size) was
selected according to theM-values and biological parameters such as canopy size and orchard size. The optimum
VIs determined by higherM-valueswere TCARI760–650 aswell asGNDVI, NIR/G, Redge/G andVIGreenusing any of
the bands related to Redge (740 and 750 nm) or NIR regions (760 and 850 nm). Results reported on the utility of
the 2-class and 4-class systems using the above VIs to discriminate LW; however it would bemore convenient to
develop the algorithm based on the 4-class system (H, early, intermediate and late). The early detection of LW
through themethodology proposed in this research could allow farmers to control themovement of this disease
through proper management strategies.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Avocado (Persea americana) is an important fruit crop in Florida. It is
second in importance in Florida behind citrus, with 30,700 t of fruit har-
vested in 2013 for a wholesale value of $35 million (Evans & Bernal
Lozano, 2015). Fruit worth $24.4 million a year at the farm gate
(USDA, 2013) are produced by 500 growers and handled by 30 regis-
tered avocado shippers (Flinn, 2014). This industry represents approxi-
mately 60% of the tropical fruit crop acreage in Florida (2800 ha), of
which over 98% occurs in southeastern Miami-Dade County (Ploetz
et al., 2012; USDA, 2014). Avocado production brings in substantial
“new dollars” to Florida ($100 million per annum) (Evans & Bernal
Lozano, 2015). Avocado trees form an important part of the urban can-
opy; backyard trees contribute economic, esthetic, and environmental
benefits, adding as much as 10% to residential property values in
South Florida (Evans & Crane, 2012). There are more than 250,000
urban avocado trees in the state of Florida (Pybas, 2009).

Avocado is the most important agricultural suscept of laurel wilt
(Ploetz et al., 2011a). Laurel wilt (LW) is a lethal and complex disease
that has spread rapidly along the southeastern seaboard of the United
States since it was first reported in the Western Hemisphere in 2002
in Port Wentworth, Georgia (Ploetz, Hulcr, Wingfield, & de Beer, 2013;
Rabaglia, Dole, & Cognato, 2006). In February 2011, LW was confirmed
for the first time in Miami-Dade County, 10 miles north of Florida's
main avocado production area in Homestead (Ploetz et al., 2011b).
In 2012, it was first detected in the commercial avocado production
area (CAPA) (Ploetz et al., 2013). By the end of 2014, the disease had
been confirmed as far west as Claiborne County, LA, as far north as
Sampson County, NC, and as far south as Miami-Dade County, FL
(USDA, 2014). The rapid movement of LW has been due to the
pathogen'smobile ambrosia beetle vectors, human transport of infested
wood (e.g., firewood), and the presence of native and non-native plants
susceptible to ambrosia beetle attack and laurel wilt throughout the
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southeastern United States (Chemically Speaking Newsletter, 2009;
Ploetz et al., 2011a).

LW is a recently introduced vascular disease caused by the Asian
fungus Raffaelea lauricola, which has ambrosia beetle vectors, including
Xyleborus glabratus (Fraedrich et al., 2008; Ploetz et al., 2012;
Harrington, Fraedrich, & Aghayeva, 2008). The presence of the LWpath-
ogen results in vascular plugging of the xylem, beginning as soon as
three days after infection, thereby impeding theflowofwater and nutri-
ents (Ploetz et al., 2013). Wilting occurs soon after, with leaves rapidly
changing from an oily green color to brown, and defoliation occurs
within 2–3 months of the onset of symptoms (Ploetz et al., 2012).
Many symptoms of LW are similar to those caused by other diseases
or factors, such as freeze damage, Phytophthora root rot, Verticillium
wilt, lightening and fruit stress (overbearing), whichmakes visual diag-
nosis of the disease difficult (Sankaran, Ehsani, Inch, & Ploetz, 2012). In
addition, it is difficult to manage the disease once plants display exter-
nal symptoms, since they develop only after significant colonization of
the host by the pathogen occurs and fungicide movement and efficacy
is dramatically reduced in such trees (Inch & Ploetz, 2012; Ploetz et al.,
2011b). Thereby, the early detection of LW (trees withminimum symp-
toms) could be a valuable source of information for executing proper
disease control measures to prevent the development and the spread
of the disease (Sankaran, Mishra, Ehsani, & Davis, 2010).

While other diseases can kill avocado trees, none of them develop as
quickly as LW (Ploetz et al., 2012). In Florida, it is estimated that losses
of $27 to 54 million could occur if reliable control strategies are not de-
veloped (Evans, Crane, Hodges, & Osborne, 2010; Ploetz et al., 2012),
while the cost to replace trees destroyed by the disease would be
around $423 million (Evans & Crane, 2012). Moreover, there is a
major concern that LW will spread to California, the leading producer
in the United States, and Mexico, the world's top producer (Evans
et al., 2010; FAO, 2010; Ploetz et al., 2012).

Sanitation is an important step in managing LW (Ploetz & Carrillo,
in press), but accurate and rapid measures are lacking (Sankaran
et al., 2012). Currently, symptomatic trees are detected, infection by
R. lauricola is confirmed via laboratory analyses, and positive trees are
removed and destroyed as quickly as possible. An early detection tech-
nique to replace this time-consuming and expensive method could be
quite useful in mitigating the development and spread of this disease
(De Castro, Ehsani, Ploetz, Crane, & Buchanon, 2015). Sankaran et al.
(2012) proved that LW could be detected with visible-near infrared
spectral reflectance data from leaves of R. lauricola-infected plants,
even asymptomatic or trees with minimum symptoms.

By applying multivariate analysis tools, such as neural networks, it is
possible to detect significant spectral difference and classify spectral data
into agronomical classes (De Castro, Jurado-Expósito, Peña-Barragán, &
López-Granados, 2012; Han, Kamner, & Pei, 2012). Neural networks,
togetherwith naïve Bayesian classifier, support vectormachines, and de-
cision trees, are considered the more advanced techniques for data clas-
sification (Han et al., 2012). Neural networks allow the exploration of
relationships or models that could not be detected using traditional sta-
tistical procedures (Rzempoluck, 1997). Furthermore, neural networks
offer some advantages over those advanced techniques, such as high
flexibility and adaptability to the results, high tolerance of noisy data
and errors, ability to classify non-trained patterns, capacity to work
when low knowledge of relationships between attributes and classes
conditions exist, and high computation process speed (Han et al.,
2012). Those advantages contribute to make neural networks one of
the most useful classification predictors in data mining (Rogan et al.,
2008). Neural networks and spectral data have been previously used
in a wide array of real-world data, such as estimating crop areas
(Heremans, Bossyns, Eerens, & Van Orshoven, 2011), mapping land-
covermodifications (Rogan et al., 2008), and selecting a subset of several
wavelengths or vegetation indices for detection of biotic and abiotic
stresses in plants (De Castro et al., 2012; Estep, Terrie, & Davis, 2004;
Wu, Liu, Zhou, Yan, & Zhang, 2012).
Usha and Singh (2013) and Sankaran et al. (2010) reviewed the
potential for image-based remote sensing to detect diseases of crops.
Multispectral aerial imaging has been used to detect, monitor and quan-
tify diseases of tomatoes (Zhang, Qin, & Liu, 2005), winter wheat
(Dammer, Möller, Rodemann, & Heppner, 2011), creeping bentgrass
(Raikes & Burpee, 1998), cranberries (Pozdnyakova, Oudemans,
Hughes, & Giménez, 2012), olives (Calderón, Navas-Cortés, Lucena, &
Zarco-Tejada, 2013) and citrus (Du, Chang, Yang, & Srilakshmid, 2008;
García-Ruiz et al., 2013). Remote sensing tools can significantly improve
disease detection if the spectral and spatial properties of remote sensing
equipment are sufficient to detect differences in spectral reflectance
(López-Granados, 2011). Some authors have evaluated image spatial
and/or spectral properties required for agriculture applications. For ex-
ample, García-Ruiz et al. (2013) studied the effect of image resolution
on classification performance by comparing a multi-band imaging sen-
sor with a hyperspectral imaging system to detect Huanglongbing in
citrus; better accuracies in classification were obtained when high-
resolution multi-band images where used. Sankaran, Khot, Maja, and
Ehsani (2013) and Torres-Sánchez, López-Granados, De Castro, and
Peña-Barragán (2013) tested spectral and spatial properties of imagery
sets taken at different altitudes to detect stress in citrus orchards and
discriminate weed seedlings. Gray, Shaw, Gerard, and Bruce (2008)
concluded that high spatial and spectral resolutions were needed to de-
tect early season weeds in multispectral images of soybean fields.
Successful image analyses clearly rely on defining the correct spatial
and spectral resolution.

De Castro et al. (2015) reported on the utility of red-edge, green
and blue aerial images to detect LW on avocado. They confirmed that
the contrast between visible bands was enough for the accurate dis-
crimination of a tree affected by LW once external symptoms had fully
developed. However, they suggested that a higher spectral resolution
camera with a greater band number and narrower wavelengths
would be needed to detect infection by R. lauricola before symptoms
developed.

The objective of the present study was to evaluate the spatial and
spectral requirements for quick and accurate detection of LW for the fu-
ture purpose of developing a LW classification algorithm. The research
was divided in two parts; in the first part of this study, spectral analysis
was carried out under controlled conditions, and in the second part,
image analysis was performed at canopy level in a commercial avocado
field. The specific goals were to: i) select the best multispectral
wavebands to efficiently discriminate affected trees and select those fil-
ters to attach to a multiband camera; ii) quantify the influence of image
spatial resolution (i.e. flight altitude) in the detection of affected trees;
and iii) establish the best vegetation indices and number of classes in
order to develop the classification algorithm.
2. Material and methods

2.1. Part 1: laboratory data—spectral analysis

2.1.1. Host inoculation
Leaves were obtained from potted ‘Simmonds’ avocado trees grown

in a temperature-controlled greenhouse at the University of Florida's
Tropical Research and Education Center (TREC) in Homestead. To in-
duce LW, 10 plants were inoculated approximately 5 cm above the
soil level by drilling four small holes around the circumference of the
trunk, each of which received 750 conidia of R. lauricola, for a total of
3000 plant−1. By 14 days after inoculation (DAI), slightly early symp-
toms of LW had begun to develop in some of the leaves. To induce
Phytophthora root rot (PRR), 10 plants were inoculated by infesting
each of 10 pots with 6 g of wheat seed colonized with Phytophthora
cinnamomi. After 14 days, early symptoms of PRR appeared in the
form of yellowing of some leaves. For comparison, healthy (H) leaves
were obtained from potted plants grown in full sun.
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Samples were kept in sealed Ziploc® bags in a cooler and brought to
the lab for spectral measurements and virus testing (Naidu, Perry,
Pierce, & Mekuria, 2009).
2.1.2. Spectral reading
Four leaves per plant were sampled from each of 10 H and the inoc-

ulated plants, 14 DAI. Asymptomatic and slightly affected leaves, just
beginning to lose turgidity, were selected from LW plants. Spectral
reflectance data were collected under controlled laboratory condi-
tions in the TREC with a handheld spectroradiometer (SVC HR-1024
spectroradiometer, Spectra Vista Corporation) at 50 cm height above
each leaf with a 4° field-of-view optical lens in the spectral range of
350 to 2500 nm (Fig. 1). The measurements were made within 3 h
after the leaves were collected (Naidu et al., 2009). Five reflectance
spectra were collected for each leaf. A spectral range of 400 to 950 nm
with 10 nm spectral resolution was used based on published recom-
mendations (Ray et al., 2010) and the availability of commercial
waveband filters that would enable the development of a cost-
effective sensor. For each sample, 45 spectral reflectance features
were analyzed. Fig. 2 shows the spectral variability in the visible range
for 10 nm averaged H, LW and PPR leaf reflectance 14 days after inocu-
lation (DAI). The spectral signature for those classes showed overlap
areas in much of the visible spectrum from 400 to 700 nm (Fig. 1).
Two portable halogen work lamps (500 W) were used as the light
source, and the reference reflectance spectra were acquired using a
Fig. 1.Visible–near infrared reflectance spectra representing leaves from a healthy tree (H), laur
inoculation (DAI).
white panel (Spectralon Reflectance Target, CSTM-STR-99–100; Spectra
Vista Corporation) in the presence of the light source (Fig. 3).

2.1.3. Data analysis and band selection
Spectral data for LW, PRR and H plants were analyzed with Tukey's

studentized range test (α = 0.01) (JMP 10, SAS Institute Inc., Campus
Drive, Cary, NC, USA 27513), and results were used to select filters for
future image analyses.

2.1.3.1. Neural networks. Two neural networks, multilayer perceptron
(MLP) and radial basis function (RBF), were applied to identify the
best 10 nm bandwidth for discrimination of H and LW trees. A neural
network is a function of predictors, also called inputs or independent
variables, that minimize the prediction error of target variables, also
called outputs (SPSS Manual). These models are able to learn by exam-
ple. Thus, when using a neural network there is no need to program
how the output is obtained given certain input; rather, a learning algo-
rithm is used by the neural network to calculate the relationship be-
tween input and output which is then utilized to predict output with
the entered input values (de Castro et al., 2012). The neural network
creates a fitted model in an analytical form, where the parameters are
weight, bias, and network typology. Both neural network models, MLP
and RBF, are a fully connected multilayer feed-forward supervised
learning network trained by the back-propagation algorithm to mini-
mize a quadratic error criterion; no values are fed back to earlier layers.
The size of the MLP is described as size of input layer × size of hidden
elwilt-inoculated tree (LW) and Phytophthora root rot-inoculated tree (PRR) 14 days after

Image of Fig. 1


Fig. 2. Standard deviation error bar showing variability in visible reflectance spectra for overlap from healthy leaves (H), laurel wilt-inoculated leaves (LW) and Phytophthora root rot-
inoculated leaves (PRR) 14 days after inoculation (DAI).

Fig. 3. Equipment used to take spectral measurements: SVC HR-1024, white panel
(Spectralon Reflectance Target) and light source.
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layer × size of output layer (Këranen, Aro, Tyystjärvi, & Nevalainen,
2003; Burks, Shearer, Heath, & Donohue, 2005), while RBF is composed
by an input layer, a hidden layer, and an output layer (de Castro et al.,
2012). The two main differences between these models are that the
connections in the RBF between the input and output layers are not
weighted, and the transfer functions on the hidden layer nodes are radi-
ally symmetric (del Brío & Molina, 2006). A hold-out cross-validation
procedurewasused to calculate thefitness ofMLP andRBF for each clas-
sification model. The full dataset was randomly split into three datasets
by partitioning the active dataset into training, testing and holdout sam-
ples. After learning, the MLP or RBF model was run on the test set that
provided an unbiased estimate of the generalization error. SPSS was
used to perform spectral analysis (SPSS v.22, 2014, Inc., Chicago;
Microsoft Corp., Redmond, WA).

2.2. Part 2: field data—image analysis

After the spectral analysis was carried out at the leaf scale, the study
was scaled up to the canopy level, and image analysis was performed in
a commercial avocado field to evaluate the camera specifications and
flight altitudes for the suitable definition of aerial imagery flight
mission.

2.2.1. Study area and image acquisition
For image analysis, filters selected in the previous step were at-

tached to a Tetracam mini-MCA-6 (Tetracam, Inc., CA, USA) multispec-
tral camera with six individual digital sensors arranged in a 3 × 2
array, independent optics and user customizable band pass filters
(Andover Corporation, NH, USA). Each unit holds a 1.3 megapixel
CMOS sensor (1280 × 1024 pixels), focal length of 9.6 mm and FOV of

Image of &INS id=
Image of Fig. 3
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43.7 × 35.6°. Images are stored in independent compact flash cards em-
bedded in the camera with 8 bit radiometric resolution.

The MCA camera was used to take multispectral aerial images
(Green, G: 580–10 nm; Red, R650: 650–10 nm, Red-edge, Redge740:
740–10 nm, Red-edge, Redge750: 750–10 nm, NIR, NIR760: 760–10 nm,
and NIR, NIR850: 850–40 nm) from a helicopter in February 2014. The
multispectral six-band images were taken on a cloudless day in winter
(February 17th) of 2014 at sun angles from 10:30 to 12:00 EST and at
an off-nadir angle (0–10 from nadir). The images were geo-reference
to the world geodesic survey 1984 (WGS84) datum. An avocado field
in the CAPA in south Miami-Dade County (latitude and longitude coor-
dinates, 25.593194, −80.423583) with trees at different stages of LW
development and H plants was selected (Figs. 4 and 5). This infested
field was found during helicopter surveys by LW experts from the
Florida Avocado Committee. LW was confirmed in representative trees
at all stages of development by recovery of the pathogen on CSMA
and confirmation with a diagnostic DNA test (see Carillo et al., 2014),
in a rapid action by LW experts from the University of Florida and the
Florida Avocado Committee. Three stages of LW development were
used to evaluate the disease: 1) early symptoms, in which leaves were
still green although had just begun to lose turgidity, developing a slight
gray color in some parts; 2) intermediate symptoms, in which leaves
began to desiccate, became brittle, wilted, and were a dull gray-green
color; 3) late symptoms, in which leaves were completely desiccated,
brittle and brown. Every positive LW-infested tree in the field was se-
lected and subsequently used in the image analyses, consisting of 21
infested trees, of which 24% of data corresponded to early stage, 9% to
intermediate stage, and 64% to late. A set of 12 healthy trees was used
as the control.

The affected portion of the trees aswell as healthy control treeswere
georeferenced and categorized into each degree of development. In ad-
dition, geocoordinates for the images were recorded for subsequent
ground truthing.
2.2.2. Spatial resolution affected by flight altitude
Images were captured from three altitudes (180, 250 and 300 m) to

quantify the influence of image spatial resolution and identify the ideal
altitude to detect LW (Fig. 6).
Fig. 4. The selected avocado field with the presence of trees at different stages of
2.2.3. Image pre-processing
Multispectral images were preprocessed for alignment and radio-

metric correction. Pixel Wrench (PW2) software (Tetracam Inc.,
Chatsworth, CA, USA)was used to align the six images taken by individ-
ual digital sensors in each shoot. A good alignment of all the individual
bands is crucial for subsequent image analysis, especially when spectral
values of different objects of the image are extracted (Torres-Sánchez
et al., 2013). PW2 provides an alignment file that contains information
about the translation, rotation, and scaling applied between sensors. A
vignetting correction was also carried out in the same process, as rec-
ommended by Lebourgeois et al. (2008). The quality of the alignment
process was evaluated by using the calibration target data captured in
the images at each altitude (Laliberte, Goforth, Steele, & Rango, 2011;
Torres-Sánchez et al., 2013). Spatial profiles were taken across the cali-
bration target for different values of the parameter set employed in the
PW2, such as the FOV optical calculator and vignette parameters. These
spatial profiles consisted of graphics representing the spectral values for
each band along a line drawn for both calibration targets in the multi-
band images using the ENVI image processing software. The best results
were used for the alignment process, with displacement among the
curves in the spatial profiles for each channel of less than 1 pixel.

For radiometric correction, two calibration targets (each
1.2 m × 1.2 m; Group 8 Technology, Inc., UT, USA) were used during
flight. The average reflectance of the black and white targets was 3%
and 82%, respectively. An empirical line calibration (Smith & Milton,
1999) was carried out in ENVI software (ENVI, Research Systems Inc.,
Boulder, CO, USA) to fit digital values of the MCA imagery to the target
reflectance spectra (Laliberte et al., 2011; Suárez et al., 2010). Pixels of
the images presented digital counts within the range of 0–100% values
of reflectance.

2.2.4. Image analysis: spectral resolution affected by flight altitude
Healthy trees and an affected portion of those that showed one of

the stages of LWdevelopment (early, intermediate and late)were locat-
ed in the images. Pixel-based retrieved reflectance data of those trees
were extracted from images at each of the studied altitudes (180, 250
and 300 m). Only central pixels were selected, avoiding edge pixels
and thus, mixed pixels. Mean reflectance spectra calculated for the six
spectral bands for each class were used to calculate 28 vegetation
laurel wilt infection. This image was captured with a standard RGB camera.

Image of Fig. 4


Fig. 5. Three stages of laurel wilt development: early, intermediate and late.
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indices (VIs) derived from the six bands of the MCA camera (Table 1).
VIs that contained near-infrared (NIR) and/or Red informationwere ap-
plied to possible combinations of the Tetracam bands. The VIs in the
present study are related to vegetation conditions and plant structure
used elsewhere for agricultural studies (Peña-Barragán, Ngugi, Plant, &
Six, 2011; Calderón et al., 2013; Ashourloo, Mobasheri, & Huete,
2014). ENVI software was used to process and analyze the images. To
Fig. 6. Images captured with a Tetracam MCA-6 cam
determine the vegetation indices thatwere useful for separating classes,
Tukey's HSD test (α = 0.01) was used to analyze VIs (JMP, SAS).

The M-statistic expresses the difference in means of two class histo-
grams normalized by the sumof their standard deviations (σ). The extent
towhichM-statistics differ will depend on thewidth of the evaluated his-
tograms. For the same difference in means, wider histograms (larger σ)
will cause more overlap and less separation than narrow histograms
era at 180 m, 250 m and 300 m above the field.

Image of &INS id=
Image of Fig. 6


Table 1
Vegetation indices explored in this study derived from the six bands of the MCA camera.

Vegetation index VI adapted to laurel wilt detection bands Adapted from reference

R/G R650/G; Redgex/G; –
NIR/G NIRy/G; –
Red-G R650−G; Redgex−G De Castro et al. (2015)
Red-edge/R band ratios Redgex/R650 This study
Redged/Redged Redge750/Redge740 This study
Green vegetation index VIGreen ¼ G−R�

GþR� Gitelson et al. (2002)

Green NDVI GNDVI ¼ NIRy−G
NIRyþG

Gitelson and Merzlyak (1996)

Normalized Difference Vegetation Index NDVI ¼ NIR�−R�
NIR�þR� Rouse, Haas, Schell, and Deering (1973)

Excess Red ExR=1.4R⁎−G Meyer, Hindman, and Lakshmi (1998)
Modified Excess Red MExR=1.4NIRx−G This study
Ratio Vegetation Index RVI ¼ NIRy

R� Jordan (1969)

Difference Vegetation Index DVI=NIR⁎−R⁎ Jordan (1969)
Modified Simple Ratio MSR ¼ ðNIRy =R� Þ−1

ðNIRy =R� Þ
0:5þ1

Chen (1996)

Triangular Veg. Index TVI=0.5∗[120(NIRy−R⁎)−200(R⁎−G)] Broge and Leblanc (2000)
Modified Triangular Vegetation Index 1 MTVI1=1.2∗[1.2(NIRy−G)−2.5(R⁎−G)] Haboudane, Miller, Pattey, Zarco-Tejada, and

Strachan (2004)
Modified Triangular Vegetation Index 1 MTVI2 ¼ 1:5�½1:2ðNIRy−GÞ−2:5ðR�−GÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�NIRyþ1Þ2−ð6�NIRy−5�
ffiffiffiffi
R�p

Þ
p

−0:5
Haboudane et al. (2004)

Renormalized Difference Vegetation Index RDVI ¼ ðNIRy−R� Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNIRyþR� Þ

p Rougean and Breon (1995)

Improved SAVI with self-adjustment factor L MASAVI ¼ 0:5 �
h
2 � NIRy þ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 � NIRy þ 1Þ2−8 � ðNIRy−R�Þ

q i
Qi, Chehbouni, Huete, Keer, and Sorooshian (1994)

Optimized Soil-Adjusted Vegetation Index OSAVI ¼ 1:16 � ðNIRy−R� Þ
ðNIRyþR�þ0:16Þ

Rondeaux, Steven, and Baret (1996)

Modified CARI MCARI ¼ ½ðNIRy−R�Þ−0:2ðNIRy−GÞ� � ðNIRy
�
R� Þ Daughtry, Walthall, Kim, Brown de Colstoun, and

McMurtrey (2000)
Transformed CARI TCARI ¼ 3 � ½ðNIRy−R�Þ−0:2 � ðNIRy−GÞ� � ðNIRy

�
R� Þ Haboudane, Miller, Tremblay, Zarco-Tejada, and

Dextraze (2002)
Modified CARI 1 MCARI1=1.2∗[2.5∗(NIR⁎−R⁎)−1.3∗(NIR⁎−G)] Haboudane et al. (2004)
Modified CARI 2 MCARI2 ¼ 1:5�½2:5�ðNIRy−R� Þ−1:3�ðNIRy−GÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�NIRyþ1Þ2−ð6�NIRy−5�
ffiffiffiffi
R�p

Þ
p

−0:5
Haboudane et al. (2004)

Modified Vogelmann Indices for laurel wilt detection
bands

VOG1 ¼ Redged750−NIR760
R650þRedged740

VOG2 ¼ NIR760−NIR850
Redged740þRedged750

VOG3 ¼ NIR760−NIR850
R650þRedged750

This study

NIR, Red-edge and Green Combination Index NRGCI ¼ NIR760−Redged750
G580

This study

NIR, Red-edge and Red Combination Index NRRCI ¼ NIR760−Redged750
R650

This study

NIR and Red-edge Combination Index NRCI ¼ NIR760−Redged750
Redged740

This study

Red-Edge Vegetation Stress Index RVSI1 ¼ R650þRedged750
2 −Redged740

RVSI2 ¼ R650þNIR750
2 −Redged750

Merton and Huntington (1999)

G = G580. NIRy in the form represents the specific MCA-camera band (760 and 850 nm bands) used to calculate the VI. R* in the form represents the specific MCA-camera
band (R650; Redge740; Redge750) used to calculate the VI. Redegex in the form represents the specific MCA-camera band (740 and 750 nm bands) used to calculate the VI.
CARI: Chlorophyll Absorption in Reflectance Index.
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(smaller σ) (Kaufman & Remer, 1994). TheM-statistic was used to estab-
lish the best vegetation indices for the discrimination,whereM b 1.0 indi-
cates poor separation, M N 1.0 indicates good separation, and better
separation occurs for larger M values (Smith et al., 2007).

M ¼ μa−μb

σa þ σb

2.2.5. Grouping data
The analyses were conducted taking into account 2-class or 4-class

systems. The 2-class system was designed to differentiate H and LW
trees which is sufficient to identify affected trees for removal, whereas
the 4-class system was used to differentiate H plants and the three
stages of LW development, allowing for management depending on
stage development.

3. Results and discussion

3.1. Part 1: spectral analysis—band selected

There were significant differences among H, LW and PRR plants in
the red-edge (740 and 750) and NIR (760, 940, and 950) regions
(Table 2). At 580 nm (green region) it was possible to discriminate H
plants from those affected by either disease. Furthermore, significant
differences in spectral data between the LWplants and the other classes
were observed in somewavelengths of the red region (720 and 730 nm)
andmost of theNIR region. These results documented sufficient spectral
differences among H, LW and PRR plants at 14 DAI for correct classifica-
tion, and indicated the spectral regions to examine for LW detection.

Table 3 shows the classification results obtained from themultilayer
perceptron neural network using different sets of parameters reflecting
training, testing and holdout samples. The results obtained with MLP
were better than those achieved with RBF (data not shown) with cor-
rect classification percentages ranging from 91% to 100% in all datasets
(Table 3). The most frequently selected 10 nm-wavelengths were
found in the red-edge and near-infrared parts of the spectrum. The
760, 750, and 740 nm wavelengths were always selected by the MLP
neural network for the different parameter sets, indicating that these
wavelengths are crucial for correctly classifying leaves from H, LW and
PRR plants. Other wavelengths (830 and 950 nm) were selected in the
NIR region for some of the neural networks, while wavebands lower
than 700 nm were never chosen.

The most effective wavelengths identified by MLP neural network
(760, 750, and 740 nm at a 10-nm bandwidth) and ANOVA analysis
were selected for use with the MCA-6 camera. An additional filter was
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Table 3
Multispectral classification for 10-nm bandwidth data for healthy, laurel wilt-inoculated
plants and Phytophthora root rot inoculated plants using MLP neural networks according
to several parameter sets.

Parameter
seta

Importance of
variables

Hidden
layer

Neurons of
hidden layer

Overall
classification

7–2–1 760, 750, 740, 950 1 5 91.0%
6–2–2 750, 740, 760 1 7 95.8%
6–3–1 740, 760, 750, 950 1 7 91.5%
8–1–1 740, 750, 830, 760 1 9 100%

MLP: multilayer perceptron.
The values given in bold represent the common wavelengths selected in all MLP neural
networks.

a Parameter set: sample partitioning into training–testing-holdout.
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selected in the red region (650 nm) because most of the VIs rely on
some combination of NIR and red reflectance (Jordan, 1969). Increase
in leaf area index corresponds with an increase in chlorophyll absorp-
tion and NIR-scattering and decreases with exposed substrate, resulting
in decreasing red and increasing NIR reflectance (Thenkabail, Lyion, &
Huete, 2012). A filter in the green region was used taking into account
subtle changes that occur with an increase in leaf area index, including
increased green reflectance (Gitelson, Kaufman, & Rundquist, 2002).
ANOVA analysis (Table 2) indicated that a 580–10 nm filter was the
most effective wavelength in the green region to distinguish H from
LW and PRR plants. The last filter was for the NIR region in which
more differences were found among the test plants (Fig. 1), making a
narrow filter unnecessary. Therefore, for economic reasons, a 40 nm
bandwidth at 850 nm was chosen, the wavelength that was selected
by the MLP neural network.
3.2. Part 2: image analysis

3.2.1. Effect of flight altitude
Flight altitude is an important parameter to take into account when

acquiring remote images, since it has strong implications in spatial res-
olution, flight duration, area covered by each image, time-consumption,
image processing, spectral resolution and cost. The higher the spatial
resolution, the finer the details that can be discriminated in the image.
However, when images are taken at low altitude to increase spatial res-
olution,more time is needed to capture the entire area ofwork (Gómez-
Candón, De Castro, & López-Granados, 2014), increasing flight time and
cost. In addition, at a lower altitude, the number of images needed to
cover the whole field increases, so amosaicking processmay be needed
(Torres-Sánchez et al., 2013).

As a result of the spectral analysis and band selection, the MCA-6
Tetracam camera was upgraded with the following filters: 580–10 nm,
650–10 nm, 740–10 nm, 750–10 nm, 760–10 nm and 850–40 nm. It
was used at different flight altitudes to quantify the influence of image
spatial resolution in detecting LW(Fig. 6). The imagery pixel sizewasdi-
rectly proportional to the flight altitude, with pixel sizes of 11.5 cm at
180 m, 15.3 cm at 250 m and 19.1 cm at 300 m.

Avocado orchards vary in size from 0.04 to 202 ha (USDA, 2009).
Orchards larger than 6 ha are rare and most are between 0.4 and 2 ha
(Evans & Bernal Lozano, 2015). The area covered by images taken at
the evaluated altitudes increased from 1.7 ha at 180 m to 4.8 ha at
300 m. Therefore, to minimize flight and image analysis duration the
most effective altitudes would be 250 m and 300 m, with an area cov-
ered of 3 ha and 4.8 ha, respectively. Lowering the altitude to 180 m
in a large field required a mosaicking process to stitch the images
together.

The optimum pixel size to discriminate H and LW trees is related to
tree canopy size. Since an averagemature avocado tree canopy is 7–9m
in diameter, any of the tested altitudes would be able to discriminate an
LW tree.



Fig. 7. Best vegetation indices according to M-values (N1.5) obtained in the 2-class system separation, among healthy plants and laurel wilt-affected trees, as affected by flight altitude.
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3.2.2. Vegetation indices and optimum number of classes
Reflectance values captured at each flight altitude for H and LWtrees

were studied based on a 2-class and a 4-class system with VIs.
3.2.2.1. System based on a 2-class system: healthy plants and laurel wilt-
infested trees.Using the 2-class system, significant differences in spectral
data between H and LW trees were observed in most of the VIs at all al-
titudes (data not shown). The M-statistic results quantified the separa-
tion between H and LW plants, and showed the best indices to
discriminate both classes. M values varied according to the flight alti-
tude and vegetation indices, achieving values N1.0 in most cases.
These results indicate good separation and satisfactory results for
Fig. 8.M-values for best vegetation indices, according to M-values N1.0, obtained in the 4-class
b) healthy and intermediate stage separation, and c) healthy and late stage separation.
vegetation classification (Smith et al., 2007). Fig. 7 shows the best re-
sults obtained for M-values using a 2-class system as affected by flight
altitude. Twenty-five VIs achieved anM-value higher than 1.5 in all alti-
tudes showing to have high discriminatory power (Smith et al., 2007).
The best M-values were obtained at 250 m, and second best at 300 m.

NIR750/G performed significantly better than other indices at 180,
250 and 300 m, with the next best discriminator being the Redge750/
G, followed by the NIR850/G; Redge740/G; GNDVI760; VIGreen750–650;
DVI760–740; VIGreen740; and TCARI750–650; GNDVI850.

With the 2-class system and aerial images taken by the upgraded
MCA-6 camera H and LW trees could be efficiently discriminated at dif-
ferent altitudes, and VIs were identified to develop an LW classification
algorithm. Those VIs were designed to measure structural and color
discrimination system as affected by flight altitude: a) healthy and early stage separation,

Image of &INS id=
Image of Fig. 8
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changes in the vegetation properties.When the tree is infestedwith LW,
the amount of chlorophyll in the leaves is reduced and the cell structure
is damaged, since this disease plugs the xylem impeding the flow of
water and nutrients in affected trees, resulting in an increase in tree
temperature (De Castro et al., 2015).

3.2.2.2. Development of a 4-class system. In the 4-class system, spectral
data from H plants were compared with those from early, intermediate
and late stages of LWdevelopment. Distinction of different LWdevelop-
ment stages was not studied, since the objective was to detect LW trees
and discriminate these from H trees. Significant differences in spectral
data were observed between H and each of the LW stages when ana-
lyzed at 180, 250 and 300 m (data not shown). Therefore, this system
could be used to detect LWat each developmental stage using aerial im-
ages taken by the selected filters.

The M-statistic was calculated for each of the VIs at three flight alti-
tudes. Only M values N1.0 were considered for this study (Fig. 8) since
lower values have been shown to provide a poor spectral separation be-
tween H and LW trees (de Castro et al., 2015). M results varied accord-
ing to the disease development stage and altitude. Regardless of the
acquisition altitude, a high number of VIs had M values N1.0 when
late or intermediate stage classes were compared to H trees, reaching
these VIs with greater M-values than those obtained in the comparison
between H and early stage of LW development.

In general, H plants could be distinguished from LWplants best dur-
ing the late stage of development (Fig. 8c), as the M-statistic was N5 in
many cases indicating robust separation of these classes (Torres-
Sánchez et al., 2013). Good separation was also achieved between H
plants and those at the intermediate stage of development (Fig. 8b), as
a large number of VIs had high M-values. Although H and late or inter-
mediate stage LW plants could be distinguished with a large number of
VIs, it was more difficult to separate H from early stage LW trees. In the
intermediate and late stage of development, external symptoms have
developed, and leaves became wilted or desiccated and were a dull
gray-green or brown color, while leaves in early stage were still green,
and just beginning to lose turgidity.

Twelve VIs had M values higher than 1.0 when H trees were com-
pared to early stage trees. In the first stage of disease development, in-
ternal symptoms began soon after infestation because the xylem
function is impaired and hydraulic conductivity is reduced; however
very slight symptoms can be discerned in the infested tree (Ploetz
et al., 2013). Thus, pixel-based retrieved reflectance spectra of early
stage trees were similar in the visible region to H data that showed
leaves vigorous in green color (Fig. 5). These results agree with spectral
information obtained under control for LW leaves 14 DAI (Fig. 1). Early
LW stage must be identified by detecting differences in spectral data
resulting from the cell structure, which were found in ratios between
the NIR and red-edge region, as shown in Fig. 8a. Thus, LW trees even
with minimal symptoms could be distinguished using aerial images
taken with the selected filters.

With regard to the flight altitude, the magnitude of M-statistic for
most of VIs was greatest at 250 m for all the scenarios. M-results were
similar for both 180 and 300 m altitudes. These results agree with
those obtained in the analyses based on a 2-class system (Fig. 7) and
offer high robustness in the discrimination of laurel wilt disease at this
altitude. A preliminary conclusion could be that the most effective alti-
tude to take images for LW detection is 250 m. Moreover, images
taken at that altitude cover the whole field area for most of the avocado
orchards in Florida (0.4–2 ha)minimizing flight and image analyses du-
ration. The pixel size for 250 m altitude images (15.3 cm) is also able to
discriminate the mature avocado tree canopy.

3.2.2.3. Vegetation indices. As a general statement, the VIs that best per-
formed, regardless of class-altitude combination, were TCARI760–650 as
well as GNDVI, NIR/G, Redge/G, and VIGreen using any of the bands re-
lated to Red-edge (740 and 750 nm) andNIR (760 and 850 nm) regions.
These VIs showed robustness in the ability of discriminating LW at each
of development stages, even with minimal external symptoms. There-
fore, these VIs should be used to develop an LW classification algorithm
in further research.

3.2.2.4. Optimum number of classes. Focusing on the ultimate objective of
developing a LW classification algorithm, it is necessary to establish the
effective number of classes. The results obtained herein reported on the
utility of the 2-class and 4-class systems to classify LW using aerial im-
ages and the aforementioned VIs. Fig. 9 shows the M values reached
with those VIs as affected by class aggrupation and flight altitude. In
all cases, the best discriminatory power was reached for the separation
late stage-H, followed by the separation intermediate stage-H, as ex-
plained above. However, no large differences in M-values were found
between the H-early stage separation and the H-LW (2-class system)
separation, showing similar separation capacity. According to our find-
ings, any of both systems would allow identifying LW infested trees
using the selected VIs and filters. However, it should be more conve-
nient to develop the classification algorithm based on four classes
(H, early, intermediate and late), as the high capacity to separate late
and intermediate stage from H will make it more accurate (Fig. 9).

Themost important achievement of this researchwas the successful
identification of LW, evenwithminimal symptoms, using six-band aeri-
al images. Themore efficientwavebands to separate H and early stage of
LW development were selected and the corresponding filters were at-
tached to theMCA-6 camera. The idealflight altitude, number of classes,
and VIs for detecting LW using aerial images were determined, satisfy-
ing the overall research objective.

The early detection of LWwill facilitate implementation of manage-
ment strategies to prevent the development and spread of the disease. A
classification algorithmbased on a 4-class system could be used to apply
site-specific control tactics depending on the developmental stage of
the disease. By using remote sensing techniques, such as a properly se-
lected filter for the MCA-6 camera, and discrimination algorithms to
identify early stage of LWdevelopment trees could help farmers control
themovement of this devastating disease and keep the Florida CAPA the
second leading avocado producer in the nation.

4. Conclusions

As part of an overall research program to detect and suppress LW in
Florida's CAPA, the spatial and spectral requirements for quick and accu-
rate detection of LWwere evaluated in this study. Spectral data analyses
showed significant differences among H, LW and PRR plants. The most
effective wavelengths were identified by MLP neural network, which
achieved nearly 100% and 100% correct classifications, and the filters
were updated to a MCA-6 Tetracam camera (580–10 nm, 650–10 nm,
740–10 nm, 750–10 nm, 760–10 nm and 850–40 nm).

Aerial image analysis proved the utility of the selected filters for
successful identification of LW, even trees in early stage of disease de-
velopment with minimal symptoms. The effect of flight altitude was
evaluated due to its strong implications in spatial resolution, flight and
image analysis duration. The ideal flight altitude of 250 m, correspond-
ing to a pixel size of 15.3 cm,was selected according to themagnitude of
M-values and biological parameters such as canopy size and orchard
size. Satisfactory results were also achieved at 180 and 300 m.

Optimum VIs were identified to develop an LW classification algo-
rithm, as determined by higher M values: TCARI760–650 as well as
GNDVI, NIR/G, Redge/G and VIGreen using any of the bands related to
Redge (740 and 750 nm) or NIR regions (760 and 850 nm). Regarding
the most efficient number of classes to perform the algorithm, results
reported on the utility of the 2-class and 4-class systems using the afore-
mentioned VIs. However, according to the findings, it should be more
convenient to develop the algorithm based on a 4-class system
(H, early, intermediate and late), since higher accuracy could be reached
in the classification map versus the 2-class system.



Fig. 9.M-values for the effective vegetation indices obtained in the 2-class and 4-class discrimination systems as affected by flight altitude. TheHth-laurel wilt class represents the 2-class
system, whileHth-E, Hth-W and Hth-Lt represent the 4-class system used to differentiate healthy plants and each of three infestation stages of laurel wilt individually (early, intermediate
and late).
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Use of theMCA-6 camera upgraded with the selected filters will en-
able a rapid and accurate assessment of laurel wilt disease progression,
as well as provide a valuable tool for mitigating this important threat to
Florida's avocado production. The authors suggest developing the algo-
rithm in further research for amethod of quick and accurate early detec-
tion of LW. An algorithm based on a 4-class system would be able to
detect different stages of laurel wilt progress and could be used to
apply site-specific control tactics depending on the stage.

The importance of avocado is recognized throughout the world,
making it necessary to prevent the spread of this disease. The use of
early detection techniques through methodology proposed in this re-
search could potentially allow farmers to control the movement of
this disease through proper management strategies, as without a reli-
able control strategy the cost to replace avocado trees destroyed by
this disease in Florida would be about $423 million.
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