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Societal Impact Statement
Advancements in our ability to rapidly detect plant responses to stress are neces-
sary to improve crop management practices and meet the global challenge of food 
security. Using optical approaches to detect plant stress before symptoms become 
apparent has great potential, but these approaches lack testing in multiple-stress en-
vironments and fail to fully exploit the data collected. Using hyperspectral data from 
lettuce, we show that optical measurements can provide growers with important 
stress-related information to inform crop management practices. We suggest that 
integrating this technology into protected agrosystems, such as greenhouses, could 
greatly improve crop quality and yield.
Summary
• Tools to detect and predict stress pre-visually are essential to optimally manage 

agrosystems. Here, we investigated the capability of reflectance spectroscopy to 
characterize responses of asymptomatic crop leaves under multi-stress conditions.

• Full range (350–2,500 nm) reflectance measurements and traditional plant stress 
responses were collected on lettuce leaves under the combination of different 
supplemental light types and intensities, fertilization and salinity. Partial least-
squares discriminate analysis and regression modeling and spectral indices were 
employed to characterize plant responses to multiple stress conditions, both alone 
and in combination.

• Spectral profiles (400–800 nm + 1,900–2,200 nm) of individuals grown under var-
iable environments were statistically different (p < .05) for multiple combinations. 
Partial least-squares discriminate analysis accurately classified the different single 
stressors well (accuracy: 0.76–0.91), but generated moderate accuracies (0.63–
0.65) for two-stress combinations, and low accuracy (0.33) for higher order stress 
combinations. Osmotic potential, and chlorophyll and phenol concentrations were 
well predicted by spectral data (validation R2: 0.70–0.84). Higher lettuce yield and 
quality was found under sodium light at high intensity (850 µmol m−2 s−1 photo-
synthetic active radiation), with high fertilization (150 ppm N) and no salinity.
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1  | INTRODUC TION

Global demand for agricultural crops is increasing, and may continue 
to do so for decades, propelled by a projected 2.3 billion person 
increase in global population and a continued rise in per capita in-
comes by 2050 (Godfray et al., 2010). A major goal of plant breed-
ing is increasing crop production and nutritional content, with the 
latter being especially important for species that will be cultivated 
in low-income areas (Gascuel, Diretto, Monforte, Fortes, & Granell, 
2017). In efforts to increase growing season length to enhance 
production, there has been an increase in protected growing envi-
ronments, such as greenhouses, high tunnels, and chamber-based 
production systems. In these systems, crop productivity and quality 
are affected by different environmental factors than crops from field 
production systems, such as light intensity and salinity, as well as 
over fertilization, which can exacerbate other environmental issues 
affecting production (Cotrozzi & Landi, 2018; DaMatta, Grandis, 
Arenque, & Buckeridge, 2010; Godfray et al., 2010; Mickelbart, 
Hasegawa, & Bailey-Serres, 2015).

Exposure to non-optimal conditions for a short period of time 
usually increases plant antioxidant metabolism to counteract oxida-
tive stress, and as a consequence improves nutritional quality (Pérez-
López, Miranda-Apodaca, Lacuestra, Mena-Petite, & Munõz-Rueda, 
2015). This outcome may represent an optimal choice for growers, 
enhancing plant nutritional quality, especially under controlled con-
ditions. Thus, early diagnosis (e.g., before visible symptoms) of plant 
responses to environmental variation is important to maximize plant 
nutritional status yet avoid negative consequences for biomass and 
yield production. It is also important to assess the effects of com-
bined environmental factors, especially when the plant response to 
the collective effect is dissimilar to the plant response to singular en-
vironmental factors (Pandey, Irulappan, Bagavathiannan, & Senthil-
Kumar, 2017; Pellegrini et al., 2019). Advancements in phenotyping 
techniques that can detect and monitor plant responses to environ-
mental variation before the onset of visual symptoms can concomi-
tantly increase crop yield and quality, and optimize management and 
input efforts.

The need for rapid and non-destructive assessments of plant sta-
tus, along with the potential to simultaneously assess multiple traits 
on a large number of individual plants over multiple time periods, 
has led to the development of new, and the re-evaluation of exist-
ing, sensor technologies from various scientific domains (Li, Zhang, 

& Huang, 2014). One such emerging sensor technology is vegeta-
tion spectroscopy. This emergence is a result of improvements in the 
sensitivity and portability of spectrometers, as well as increases in 
computational capabilities and advancement of chemometric mod-
eling methods. These developments have enabled the estimation of 
a wide variety of plant chemical properties and physiological pro-
cesses based on the foliar optical properties of living tissue. The es-
timation of these traits from leaf reflectance relies on variations in 
absorption of molecular organic bonds, primarily C-H, N-H, and O-H 
bonds, resulting in vibrational excitation at specific wavelengths of 
the electromagnetic spectrum. The exploitation of the relationships 
of light with organic bonds provides the ability of vegetation spec-
troscopy to characterize plant chemical and physiological status.

In the visible region (VIS; 400–700 nm), plant pigments absorb 
most of the incident light, while larger molecules, such as carbohy-
drates, proteins and water have characteristic absorption features 
in the near-infrared (NIR; 700–1,100 nm) and short-wave infrared 
(1,100–2,400 nm) spectral regions (Cotrozzi, Townsend, Pellegrini, 
Nali, & Couture, 2018; Deacon, Grossman, Schweiger, Armour, & 
Cavender-Bares, 2017). Simple spectral reflectance vegetation in-
dices based on the ratio of reflected light at different wavelengths 
have been developed to predict foliar traits concerning the structure 
of vegetation, and can correlate with biochemistry and plant phys-
iology or stress conditions (e.g., photochemical reflectance index 
[PRI]; Gamon, Serrano, & Surfus, 1997; normalized difference water 
index [NDWI]; Gao, 1996). A more recent and expanding approach 
models plant traits directly as a function of the spectral profile using 
multivariate methods such as partial least squares regression (PLSR; 
Wold, Sjӧstrӧm, & Eriksson, 2001). The model calibration is accom-
plished by pairing leaf spectra, collected in a consistent manner using 
a uniform and stable illumination source, with independent and reli-
able measurements. These models are validated using independent 
samples, and can then be used to predict the variable of interest in 
unknown samples on the basis of their spectral reflectance alone 
(Couture & Lindroth, 2012).

To date, a number of foliar morphological, physiological, and 
biochemical traits have been successfully quantified from spec-
tra using this approach (Asner & Martin, 2008; Asner et al., 2011; 
Cotrozzi et al., 2017; Couture, Serbin, & Townsend, 2013; Couture 
et al., 2016; Petisco et al., 2006; Serbin et al., 2015). However, 
while phenotypic information can be informative in identifying 
and managing crop productivity and quality, individual traits are 

• Our findings highlight the utility and limitations of vegetation spectroscopy in a 
protected agrosystem. We suggest that integration of vegetation spectroscopy 
into intelligent and automated greenhouses and other protected systems could 
enhance management efficiency, as well as crop quality and yield.
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rarely sufficient for crop management. Spectra themselves are a 
phenotypic expression of the aggregate signals of chemical, mor-
phological and physiological properties of leaves under specific 
environmental conditions and management practices (Cavender-
Bares et al., 2016). Consequently, spectral characteristics of plants 
measured across a wide range of wavelengths could potentially 
provide important information for crop selection and management 
(i.e., hyperspectral phenotyping). The use of hyperspectral reflec-
tance as a powerful phenotyping tool in agricultural research is 
promising (Couture et al., 2018; Li et al., 2014; Serbin et al., 2015; 
Silvia-Perez et al., 2017; Yendrek et al., 2017), but questions remain 
regarding limitations of the technique, such as its capability in more 
complex, multifactorial experiments.

Lettuce (Lactuca sativa L.) is a major greenhouse-grown crop that 
is consumed worldwide and ranks as one of the top ten most valuable 
crops in the United States with an annual value of over $2.4 billion 
(Reyes-Cin-Wo et al., 2017). This popular green vegetable contrib-
utes fiber, vitamins A, C, and E, carotenoids, calcium, potassium, 
magnesium and phenolic acids to the diet of the consumer (Nicolle 
et al., 2004). Lettuce is considered a model crop for studying the im-
pact of light quality on plant responses (Saito, Shimizu, Nakashima, 
Miyasaka, & Ohdoi, 2010; Samoulienė, Sirtautas, Brazaitytė, & 
Duchovskis, 2012; Wang, Lu, Tong, & Yang, 2016) and is also con-
sidered to be moderately salt sensitive, with several studies evalu-
ating lettuce–salinity interaction (e.g., Kim, Fonseca, Choi, Kubota, 
& Kwon, 2008; Pérez-López et al., 2015; Pérez-López, Miranda-
Apodaca, Munõz-Rueda, & Mena-Petite, 2013). Furthermore, green 
leafy vegetables, especially lettuce, contain very high nitrate levels, 
and above certain thresholds may lead to pathogen infection in hu-
mans (Liu, Sung, Chen, & Lai, 2014).

Studies utilizing spectroscopy to monitor lettuce condition have 
been explored in a wide range of stressors. For example, Woodhouse, 
Heeb, Berry, Hoshizaki, and Wood (1994) showed the potential of 
this technique for monitoring health conditions of excised leaves of 
lettuce grown hydroponically under different stress conditions (i.e., 
copper, zinc, nitrogen, phosphorus, potassium, drought), applied 
singularly. More recently, studies have focused on the determina-
tion of nitrogen content of lettuce leaves and canopy by spectra 
using multivariate modeling methods (Gao, Mao, & Zhang, 2015; 
Itoh et al., 2015; Mao, Gao, Zhang, & Kumi, 2015; Sun et al., 2013). 
A similar approach has been used to predict pigment (chlorophyll, 
carotenoid, anthocyanin) content in lettuce based on VIS-NIR spec-
troscopy (Neto et al., 2017), as well as using spectral indices (Gazula, 
Kleinhenz, Scheerens, & Ling, 2007; Lopes et al., 2017; Xue & Yang, 
2009). Lara et al. (2016) used hyperspectral imaging to evaluate the 
effect of irrigation water salinity in lettuce proposing two models 
based on a principal component analysis of spectra and on a spe-
cifically developed vegetation index. Spectroscopy has also been 
used to distinguish lettuce from weeds (Slaughter, Giles, Fennimore, 
& Smith, 2008), and for lettuce postharvest classification (e.g., Mo 
et al., 2015; Moura et al., 2016). To the best of our knowledge, 
however, no study has explored the capacity of spectroscopy to 
evaluate the responses of lettuce growing under the combination 

of different, multiple environmental factors, as occurs both in con-
trolled and uncontrolled environments, or combining the different 
analytical approaches to exploit spectral data (i.e., spectral indices, 
PLSR-derived traits, hyperspectral phenotyping), a gap we address 
in this research.

Here, we test the capability of reflectance spectroscopy to rap-
idly and non-destructively characterize the responses of asymp-
tomatic, container-grown lettuce plants under the combination of 
different supplemental light types and intensities, and fertilization 
and salinity levels. Specifically, the purposes of this study were (a) 
to evaluate the potential of hyperspectral phenotyping to accurately 
detect and predict stress responses pre-visually in a multi-stress ex-
perimental design; (b) to develop spectroscopic models for the es-
timation of chlorophyll content, osmotic potential and total phenol 
concentration, three key traits for the evaluation of crop productiv-
ity and quality; and (c) to assess the variations of spectra-derived leaf 
traits, using both vegetation indices and traits derived from PLSR-
models, under the different environmental conditions.

2  | MATERIAL S AND METHODS

2.1 | Plant material and experimental design

Experimental activities were conducted in the Whistler Agriculture 
Research Greenhouse (40°25′21″N, 86°54′56″W, 189 m a.s.l.) at 
Purdue University, West Lafayette, IN. On 6 November 2017, heir-
loom seeds of “Salad Bowl Green” lettuce (Eden Brothers) were sown 
in plastic trays (27 × 54 × 7 cm) containing a Fafard Propagation Mix 
(Sun Gro Horticulture Inc.), following seed distributor recommenda-
tions. Seedlings emerged 3 days after plantation. On 20 November 
2017, 120 seedlings were selected and individually transplanted in 
0.6 L plastic pots containing the same growing mix, divided in four 
groups of 30 plants each, and exposed to four different supplemen-
tal light conditions (15 hr photoperiod): high-pressure sodium light 
(So) at low (I−; 318 µmol m−2 s−1 of photosynthetic active radiation, 
PAR) and high (I+; 850 µmol m−2 s−1 PAR) intensity, and tungsten 
light (Tu) at I− (175 µmol m−2 s−1 PAR) and I+ (425 µmol m−2 s−1 PAR). 
Irradiance profiles under the four supplemental light conditions at 
plant level are reported in Figure S1. Under each light condition, 
plants were daily re-positioned for the duration of the experiment 
to avoid position effects. On 3 December 2017, within each light 
group, plants were sub-divided into four groups of seven plants 
each and exposed to the four combinations of two levels of fertiliza-
tion (F−; 50 ppm N, and F+; 150 ppm N, using 15-5-15 Peters Excel 
fertilizer, ICL Specialty Fertilizers) and salinity (S−; 0 mM NaCl, and 
S+; 200 mM NaCl), applied every other day in the watering solu-
tion (the final 200 mM NaCl concentration was reached gradually, 
i.e., 50, 100, 150, 200 mM on the 3, 5, 7 and 9 December 2017, 
respectively). Under each light condition, the two extra plants were 
exposed to only de-ionized water and were used only for the gen-
eration of spectral models (see below). All seedlings were kept well-
watered during the whole experiment. The greenhouse day and 
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night mean temperatures were 24 and 18°C, respectively; and maxi-
mum day and night relative humidity values were ~55% and ~50%, 
respectively.

On 16th December 2017, five plants from each treatment 
combination were selected for measurements. For four of the five 
plants, and for extra plants exposed to only de-ionized water, one 
fully expanded leaf of each plant was consecutively measured for 
chlorophyll content and reflectance, and were then collected as leaf 
portions for the determination of osmotic potential. Reflectance 
was also measured on a second adjacent fully expanded leaf which 
was then immediately frozen in liquid nitrogen and stored at −20°C 
until processing for total phenol analyses. The full process required 
<5 min per plant. The remaining plants (one plant per treatment) 
were measured only for reflectance on one leaf. All measurements 
were performed between 12.00 and 16.00 hr. Then, all measured, 
individual plants were separated into shoots and roots, rinsed with 
water, and stored at −20°C until biomass determinations.

2.2 | Standard measurements

Above- (AB) and below-ground (BB) plant biomass (dry weight, DW) 
were obtained after respectively drying shoots and roots at 70°C to 
a consistent mass. The DW of leaves used for total phenols were in-
cluded in the AB determinations. A SPAD 502 meter (Minolta) was 
used to determine leaf chlorophyll concentration (ChlSPAD). Three 
measurements per leaf were made and the mean of these measure-
ments was recorded. ChlSPAD has been shown as a good representation 
of leaf chlorophyll content in both crop and tree species (e.g., Coste et 
al., 2010; Uddling, Gelang-Alfredsson, Piikki, & Pleijel, 2007). While we 
acknowledge the potential circularity of using a two-channel spectral 
index as an input for chemometric modeling, we view SPAD only as a 
measurement to determine chlorophyll content, and highlight that a 
potential outcome of this paper is the advantage of using spectral data 
to concomitantly estimate multiple leaf functional traits. To determine 
leaf osmotic potential (Ψπ), an approximately 2 cm2 portion of leaf was 
collected by a razor blade, placed in a mesh insert introduced in a mi-
crocentrifuge tube, immersed in liquid nitrogen until completely frozen 
and stored at −20°C until further processing. Solute concentration was 
determined with a vapor pressure osmometer (Wescor 5500; Wescor 
Inc.). Total phenol (Phen) contents were quantified colorimetrically ac-
cording to Ainsworth and Gillepsie (2007) with minor modifications. 
Twenty mg of freeze-dried leaf samples were extracted with 1.9 ml 
of 95% (vol/vol) methanol at room temperature for 48 hr in the dark. 
Extracts were centrifuged for 5 min at 13,000 g and room tempera-
ture. Thereafter, 100 µl of each sample supernatant was mixed with 
200 µl of 10% (vol/vol) Folin–Ciocalteu reagent and 800 µl of 700 mM 
Na2CO3. After a 2-hr incubation at room temperature, 200 µl of each 
sample was transferred in a clear 96-well microplate and absorbance 
of each sample was recorded at 765 nm using a microplate reader 
(SpectraMax 190, Molecular Devices). The blank-corrected absorb-
ances were quantified using a gallic acid standard curve (0–0.7 mg/ml) 
and are reported as gallic acid (GA) equivalents.

2.3 | Collection of leaf spectra

Full range (350 − 2,500 nm) reflectance profiles of lettuce leaves 
were collected using a SVC-1024i spectroradiometer (Spectral Vista 
Corporation) using a leaf-clip with an internal halogen light source 
attached to a plant probe. Measurements were made on two areas 
of the adaxial surface for each leaf, with one measurement per area, 
and measurements were combined to produce an average leaf spec-
trum. The relative reflectance of each leaf was determined from the 
measurement of leaf radiance divided by the radiance of a white ref-
erence panel, measured every 12 spectral collections.

2.4 | Model calibration and validation

We generated models to predict Ψπ, ChlSPAD and Phen from untrans-
formed reflectance profiles using PLSR (Wold et al., 2001). When pre-
dictor variables are highly correlated, as in the case with hyperspectral 
data, classical regression techniques can produce unreliable coefficients 
and error estimates (Grossman et al., 1996). In contrast to standard re-
gression techniques, PLSR reduces a large number of collinear predic-
tor variables into relatively few, uncorrelated latent variables, and has 
become the preferred method for chemometric approaches (Atzberger, 
Guerif, Baret, & Werner, 2010; Bolster, Martin, & Aber, 1996; Cotrozzi et 
al., 2018; Couture et al., 2016). To avoid potential overfitting the PLSR-
model, the number of latent variables used was based on reduction of 
the predicted residual sum of squares statistic (Chen, Hong, Harris, & 
Sharkey, 2004) using leave-one-out cross-validation. Once minimized, 
the final set of extracted components was combined into a linear model 
predicting leaf traits based on leaf spectral profiles.

Model performance was evaluated by conducting 500 ran-
domized permutations of the data sets using 80% of the data for 
calibration and the remaining 20% for cross validation. For each per-
mutation, we tracked the model goodness-fit (R2), the overall error 
rate (RMSE, root-mean-square error), the percentage of error over 
the data range (%RMSE) and bias to assess model performance when 
applied to the cross-validated data set. These randomized analyses 
generated a distribution of fit statistics allowing for the assessment 
of model stability as well as uncertainty in model predictions. We 
further determined the strength contribution of PLSR loadings by in-
dividual wavelengths using the variable important to the projection 
(VIP) selection statistic. The VIP statistic evaluates the importance 
of individual wavelengths in explaining the variation in both the re-
sponse and predictor variables, with larger weightings conferring 
greater value to contribution of individual wavelengths to the pre-
dictive model (Chong & Jun, 2005; Wold et al., 2001).

Before running the final modeling, we developed preliminary 
models to identify poorly predicted outliers likely due to spectral er-
rors, detectable from elevated reflectance in the VIS wavelengths or 
spectral jumps in the NIR region that occur when the leaf clip is not 
fully closed on either the reference or target measurements, and/or 
reference measurement errors (Cotrozzi et al., 2018; Couture et al., 
2016). Outliers removed accounted for ca. 10% of the initial data. 
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The modeling approach and data analyses were performed using the 
“pls” package in R (www.r-proje ct.org).

2.5 | Spectral indices and prediction of leaf traits

We calculated commonly used spectral indices: PRI, (R531 − R570)/
(R531 + R570) (Gamon et al., 1997; in order to avoid negative values 
of PRI, values were scaled as sPRI = (PRI + 1)/2 as reported by Letts, 
Phelan, Johnson, & Rood, 2008) and NDWI, (R857 − R1241)/(R857 + R1241) 
(Gao, 1996). Rx indicates reflectance at x nm wavelength. Leaf mass 
per area (LMA, g DW/m2), and foliar carbon (C) and nitrogen (N) con-
centrations (%DW) were generated from spectra using calibrations 
from Serbin (2012). Ψπ (MPa), ChlSPAD and Phen (mg GA/g DW) values 
were generated from spectra using PLSR-models reported above, and 
samples removed in PLSR-modeling were not included. All spectral 
indices and leaf traits were predicted from spectra averaged per plant.

2.6 | Statistical analyses

We determined the influence of supplemental light type (L), supple-
mental light intensity (I), fertilization (F), salinity (S) and their inter-
actions on the reflectance profiles of lettuce (averaged per plant) 
using permutational multivariate analysis of variance (PERMANOVA; 
Anderson, 2001), employing Euclidian measurements of dissimilar-
ity and 10,000 permutations. Spectral responses were visualized 
conducting principal coordinates analysis (PCoA) on the same spec-
tral data utilized for PERMANOVA, using the “vegan” package in R 
(www.r-proje ct.org; Dixon, 2003). This method uses a distance of 
uncorrelated variables, or principal coordinates, reducing the dimen-
sionality of the data. Using Euclidian distances, PCoA was performed 
for the significant factors and interactions shown by PERMANOVA.

Using only the spectral profiles that showed statistically signif-
icant separation using PERMANOVA, we additionally used PLS dis-
criminant analysis (PLS-DA; Chevallier, Bertand, Kohler, & Courcoux, 
2006) to determine the ability of spectral data to classify lettuce 
environmental stress. PLS-DA is a statistical approach used with 
high dimensional data to discriminate groups by projecting latent 
variables through the response and predictor variables to both re-
duce data dimensionality and maximize prediction accuracy and is 
an appropriate method for data in which predictor variables have a 
high degree of collinearity (Couture et al., 2018). The PLS model fits 
response variables that are indicators of groups of interest to the 
spectrum. In this study, we focused on the spectral regions which 
showed the higher differences among environmental conditions as 
determined by PERMANOVA. The analyses were applied by using a 
500-times-jackknifed splitting of observations into different groups 
of training (calibration) and resting (validation) sets. We used the 
number of correct classifications both in the calibration and the val-
idation sets across 500 iterations to evaluate the accuracy of the 
tested model. The calibration: validation data ratio and the number 
of components call to get the models that would give the best fit to 

the data were determined by iteratively running the PLS-DA mod-
els with different calibration: validation data ratio (i.e., 50:50, 70:30, 
80:20) and numbers of components and was based on the highest 
kappa values returned for the validation models. PLS-DA modeling 
was performed using the “caret” and “vegan” packages in R (ww-
w.r-proje ct.org; Dixon, 2003; Kuhn, 2008).

We analyzed leaf traits by four-way ANOVA following the model 
yij = µ + Li + Ij + Fk + Sl + LIij + LFik + LSil + IFjk + ISjl + FSkl + LIFijk + LISijl 
+ LFSikl + LIFSjkl + eijkl. In this model, µ represents the mean, L represents 
supplemental light type i, I represents supplemental light intensity j, 
F represents fertilization k, S represents salinity l, and eijkl represents 
the error term. Comparisons among means were determined by the 
Fisher’s least significant difference post hoc test. Relations among 
predicted leaf traits were evaluated using Pearson’s correlations. 
Statistical analyses were preceded by examination of residuals by 
the Shapiro–Wilk W test which confirmed that data met the assump-
tion of normality. Effects with p < .05 were considered statistically 
significant, while effects with p < .095 were described as marginally 
significant. Statistical analyses were performed in either JMP 13.2.0 
(SAS Institute Inc.) or R (www-r-proje ct.org).

3  | RESULTS

3.1 | Hyperspectral phenotyping

We initially examined multiple different wavelength ranges to opti-
mize PERMANOVA statistical outputs (Table S1). Final PERMANOVA 
utilized the wavelength ranges 400–800 nm and 1,900–2,200 nm, 
and its output is reported in Table 1. PERMANOVA revealed that L, 
I and S affected the reflectance profile of lettuce leaves. Significant 
interactions were also observed for the interactions L × I, L × S (mar-
ginally significant, p = .091), and for L × F × S (Figure 1). The best clas-
sifications of environmental conditions from spectra (higher mean 
Kappa) were found with a 80:20 ratio for calibration:validation data 
using 9, 10, 9, 15, 10 and 17 components for L, I, S, L × I, L × S, and 
L × F × S, respectively (Table S2). Unifactorial conditions were most 
accurately classified from spectra (mean overall accuracy and kappa 
were 0.76 and 0.52 for L; 0.87 and 0.74 for I; and 0.91 and 0.82 for S), 
while modest classification outputs were found for bifactorial condi-
tions (0.64 and 0.52, and 0.61 and 0.48 for L × I and L × S, respec-
tively), and scarce for L × F × S (0.33 and 0.24, Table 2).

3.2 | Predictions of leaf traits

We initially examined numerous models containing multiple dif-
ferent wavelength ranges and components to optimize model per-
formance (Table S3). Final models for Ψπ, ChlSPAD and Phen utilized 
the wavelength ranges 950–2,400 nm, 500–900 nm and 1,100–
2,400 nm, and included 11, 9 and 9 components, respectively. 
Ψπ, ChlSPAD and Phen were well predicted from spectral data 
collected from leaves of lettuce under different environmental 

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www-r-project.org
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conditions. Mean cross validation values for Ψπ were R2 = 0.75, 
RMSE = 0.30 MPa, bias = 0.00, and %RMSE = 9%; for ChlSPAD are 
R2 = 0.84, RMSE = 0.61, bias = 0.05, and %RMSE = 8%; and for 
Phen are R2 = 0.70, RMSE = 1.80, bias = −0.03, and %RMSE = 13% 
(Figure 2a,c,e). Ψπ standardized coefficients and VIP values 
highlighted important wavelengths around 1,400 nm and in the 
1,850–2,100 nm range (Figure 2b). ChlSPAD standardized coeffi-
cients were most pronounced in the 500–700 nm spectral region 
and over 850 nm, although ChlSPAD VIP did not highlight specific 
wavelengths throughout the selected spectral region (Figure 2d). 
Standardized coefficients of Phen peaked around 1,400, 1,500, 
1,600, 1,800, 1,900 and 2,100 nm, and VIP profile of Phen 
highlighted important wavelengths around 1,400 and 1,900 nm 
(Figure 2f).

3.3 | Variations of leaf traits

Statistical outputs for variations of observed reference (4 replica-
tions) and spectra predicted (5 replications, reported below) traits 
were similar (data not shown). We found a significant four-way inter-
action, L × I × F × S, on AB (Table 3). Higher AB values were found 
for plants under So, I+, F− and S+; So, I+, F+ and S−; and Tu, I+, F+ 
and S−. Lower values of AB were found for plants exposed to I− and 
S+, regardless of the light type and fertilization level (Figure 3a). 
Significant interactions were also observed for L × S, I × F (margin-
ally significant, p = .089), I × S, and F × S for AB:BB which showed 

(a) higher values under Tu and S−, and lower values under Tu and 
S+; (b) lower values under I+ and F−; (c) higher values under I− and 
S−, and lower values under I+ and S+; and (d) higher values under F+ 
and S−, and lower values under F− and S− (Table 3, Figure 3b). We 
also found a marginally significant L × I × F × S interaction on sPRI 
(p = .093, Table 3) which was lower for plants under So at I+, espe-
cially in the co-occurring presence of F+ and S+ (Figure 3c). L × I and 
L × S interactions were significant on NDWI (Table 3). Higher values 
were found (a) under So at I+, followed by Tu at I+; and (b) under So 
and S+, followed by Tu and S+ (Figure 3d). Two significant three-way 
interactions, L × I × S and I × F × S, were observed on Ψπ (Table 3). Ψπ 
dropped due to S+, especially under (a) So at I+, followed by Tu at I+ 
and Tu at I−, and then So at I−; or (b) I+ and F+, followed by I+ and F−, 
and then I− and F−, and I− and F+ (Figure 3e). We found a significant 
L × F interaction on ChlSPAD with higher values under Tu and F− and 
lower values under So and F−. ChlSPAD also increased under S+, over-
all (Table 3, Figure 3f). Significant interactions of L × I, L × S, and F × S 
were found on LMA. Higher levels of LMA were found under (a) So 
at I+, followed by Tu at I+, then Tu at I−, and finally So at I−; (b) Tu or 
So and S+, followed by So and S−, and finally Tu and S−; and (c) F+ 
and S+, followed by F− and S+, and finally F− or F+ and S− (Table 3, 
Figure 3g). We also found significant three-way significant interac-
tions, L × I × S and L × F × S (marginally significant, p = .070), on N 
(Table 3). N levels were (a) higher under I−, especially for Tu and S−, 
while lower under I+, especially for So, and even more in concomi-
tance of S+; and (b) higher under Tu, F− and S−, Tu, F+ and S−, and So, 
F+ and S−, in comparison to all the other conditions which showed 
similar values (Figure 3h). A significant L × I × S interaction was ob-
served on C:N (Table 3). Higher C:N values occurred under I+, es-
pecially for So and S+, followed by So and S−, while under I−, higher 
values were observed under Tu and S+ (Table 3, Figure 3i). We finally 
found a marginally significant L × I × F interaction (p = .066) on Phen, 
while S showed significant binary interactions with the other factors: 
L × S (marginally significant: p = .064), I × S and F × S (Table 3). Phen 
levels were (a) higher under So at I+, regardless of the fertilization 
regime, while lower under So at I− and F+, and under Tu at I−, regard-
less of the fertilization regime; (b) higher under So and S−, followed 
by Tu and S−, then So and S+, and finally Tu and S+; (c) higher under 
I+ and S−, followed by I− and S−, then I+ and S+, and finally I− and S+; 
and (4) higher under F− and S−, followed by F+ and S−, and finally F+ 
or F− and S+ (Figure 3j).

3.4 | Correlations among leaf traits

sPRI was positively related to ChlSPAD and N, and negatively re-
lated to NDWI, LMA, and C:N (Table 4). NDWI was also posi-
tively related to LMA and C:N, and negatively related with Ψπ and 
N (Table 4). Here Ψπ was also positively related to N and Phen, 
and negatively related to LMA and C:N (Table 4). ChlSPAD was also 
negatively related to Phen (Table 4). LMA was positively related to 
C:N, and negatively related to N, while N was negatively related 
to C:N (Table 4).

TA B L E  1   p values of four-way permutational analysis of variance 
for the effects of supplemental light type (L), supplemental light 
intensity (I), fertilization (F), salinity (S) and their interactions on 
reflectance profiles (400–800 nm + 1,900–2,200 nm) of lettuce 
leaves

Treatment combinations df p

L 1 <.001

I 1 <.001

F 1 .758

S 1 <.001

L × I 1 .009

L × F 1 .128

L × S 1 .091

I × F 1 .254

I × S 1 .794

F × S 1 .945

L × I × F 1 .749

L × I × S 1 .713

L × F × S 1 .048

I × F × S 1 .829

L × I × F × S 1 .457

Note: df represents the degrees of freedom. Significant values (p < .05) 
are shown in bold and marginally significant values (p < .095) are shown 
in italics.
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4  | DISCUSSION

Advancements in the ability to rapidly detect plant responses to 
environmental stress is necessary to improve crop management 

practices and to meet the 21st century challenge for increasing 
global food demand (Mickelbart et al., 2015). Here, we show the 
ability of spectroscopy to simultaneously provide morphological, 
physiological and biochemical information regarding multiple plant 

F I G U R E  1   Scores (M ± SE) for the first and second principal components from principal coordinates analysis (PCoA) of reflectance 
data (400–800 nm and 1,900–2,200 nm) collected from lettuce leaves, highlighting the ability of spectroscopy to detect the effects 
of supplemental light type (a); supplemental light intensity (b); salinity (c); supplemental light type × supplemental light intensity (d); 
supplemental light type × salinity (e); and supplemental light type × fertilization ×salinity (f). Circle symbols: sodium light; square symbols: 
tungsten light; black symbols: low light intensity; blue symbols: high light intensity; empty symbols: no salinity; crossed symbols: salinity; white 
symbols: low fertilization; gray symbols: high fertilization
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constituents with a single spectral measurement. We specifically 
demonstrate that spectroscopic data can be used to effectively 
monitor and detect interactive effects of multiple environmental 
factors (i.e., supplemental light type, supplemental light intensity, 
fertilization and salinity) on lettuce health, quality and yield, but we 
also highlight that the approach may have limitations, as prediction 
accuracies decreased as stress combinations, and environmental 
variation, increased.

Spectra are themselves an overall expression of the aggregate 
signals of physiological, morphological and biochemical properties 
of leaves under different environmental conditions. Thus, utiliza-
tion of hyperspectral data may prevent loss of information, result-
ing from relying on solely standard measurement approaches, that 
could be meaningful, providing information about a comprehensive 
ensemble of traits (i.e., spectral phenotyping), including those that 
we may not have measured or we may not yet know are important 
(Cavender-Bares et al., 2016). Spectra may, thus, represent a more 
powerful approach than direct measurements of leaf traits to mon-
itor crop status.

The most innovative outcome of the current study comes from 
using this approach: we showed that reflectance profiles of lettuce 
leaves were sensitive to different environmental conditions. At an 
early developmental stage and asymptomatically (i.e., visible symp-
toms were not observed), we were able to distinguish lettuce indi-
viduals grown under different supplemental light type and intensity 
or salt conditions, using the spectral regions from 400 to 800 nm 
and from 1,900 to 2,200 nm. This outcome is particularly interesting 
for lettuce since the quality and yield of this species are particularly 
sensitive to light conditions (Saito et al., 2010; Samoulienė et al., 
2012; Wang et al., 2016) and salinity (Kim et al., 2008; Pérez-López 
et al., 2015, 2013). We also identified specific spectral markers to 
discriminate the effects of different binary combinations L × I and 
L × S (although their interaction was marginally significant), as well 
as of the combination of L × F × S, although F alone did not affect 
spectral profiles. The 400–800 nm region was likely important for 
the detection of the effects of the four environmental factors on 

photosynthetic metabolism and photochemical apparatus, which 
are known to be affected in these stress environments (Guidi et 
al., 2017; Johkan, Shoji, Goto, Hahida, & Yoshihara, 2012; Sun, Ye, 
Peng, & Li, 2016). This region includes leaf pigment absorption wave-
lengths (Merzlyak, Gitelson, Chivkunova, Solovchenko, & Pogosyan, 
2003), as well as the red-edge (700–750 nm; Mutanga & Skidmore, 
2007). The importance of these spectral features in the assessment 
of the photosynthetic processes has been previously reported for 
several plant species (e.g., Gamon et al., 1997; Merzlyak et al., 2003; 
Serbin, Dillaway, Kruger, & Townsend, 2012; Yendrek et al., 2017), 
and numerous studies have also shown that the shape of the red-
edge is dependent on chlorophyll content (Clevers, Kooistra, & Salas, 
2004; Filella & Peñuelas, 1994; Smith, Steven, & Colls, 2004; Zarco-
Tejada, Miller, Morales, Berjón, & Agüera, 2004) and stress condi-
tions (Cotrozzi et al., 2018; Mutanga & Skidmore, 2007; Smith et al., 
2004).

The 1,900–2,200 nm range was, instead, likely important for the 
detection of other key regulations adopted by plants to adjust to 
environmental constrains. The osmotic adjustment necessary under 
salinity and other stress can lead to an accumulation of compatible 
solutes and ion in the vacuole (Guidi et al., 2017; Romero-Aranda, 
Soria, & Cuartero, 2001), and multiple studies (Asner & Martin, 
2015; Cotrozzi et al., 2017; Ramirez et al., 2015; Rubert-Nason et al., 
2013; Shetty & Gislum, 2011) have reported that wavelengths im-
portant for predicting non-structural carbohydrates and other foliar 
osmolyte concentrations using spectroscopy are within the 1,900–
2,250 nm range. Plant secondary metabolites also play critical roles 
in plant functioning and greatly contribute to phytochemical diver-
sity, and reflectance spectroscopy has also been used to estimate 
concentrations of the major groups of secondary compounds in-
cluding alkaloids, glucosinolates, terpenoids, phenylpropanoids and 
related phenolic compounds (Carvalho et al., 2013; Couture et al., 
2013, 2016; Ebbers, Wallis, Dury, Floyd, & Foley, 2002; Font, Río-
Celstino, Rosa, Aires, & Haro-Balión, 2005; Kokaly & Skidmore, 
2015; Rubert-Nason et al., 2013; Schulz, Engelhardt, Wegent, Drews, 
& Lapczynski, 1999), highlighting again specific absorption features 
within the 1,900–2,250 nm range. This spectral region also contains 
the main protein absorption features (Curran, 1989), suggesting that 
it is important in the detection of the L × F × S interaction. These 
outcomes clearly highlight the huge potential of reflectance spec-
troscopy in crop phenotyping and management. The incapability we 
found in detecting the four-way L × I × F × S interactive effect on 
spectra profiles as well as the reduced classification accuracy with 
increasing statistic factors was likely due to the heterogeneous re-
sponses induced by the variable environmental conditions and the 
low treatment replication. Better outputs might be reached by in-
creasing the experimental replications; this is especially true in field 
settings, where growing conditions can be highly variable.

In this study, we also present a robust approach by which specific 
plant physiological and biochemical responses to different combi-
nations of abiotic stress environments can be monitored using re-
flectance spectroscopy and that utilizes multiple permutation of the 
data, providing explicit estimates of model uncertainty. Ψπ, ChlSPAD 

TA B L E  2   Number of components (Comps), accuracy, 95% 
confidential interval (CI) of accuracy and kappa for cross validation 
data generated via partial least squares discriminant analysis, 
using 80% of the data for calibration and 20% for cross validation, 
for the classification of supplemental light type (L), supplemental 
light intensity (I), salinity (S), L × I, L × S, and L × fertilization (F) × S 
conditions from lettuce spectra (400–800 nm + 1,900–2,200 nm)

Treatment 
combination Comps

Accuracy, 
%

95% CI 
accuracy κ

L 9 0.76 0.50–0.93 0.52 ± 0.01

I 10 0.87 0.62–0.97 0.74 ± 0.01

S 9 0.91 0.67–0.99 0.82 ± 0.01

L × I 15 0.64 0.38–0.85 0.52 ± 0.01

L × S 10 0.61% 0.35–0.83 0.48 ± 0.01

L × F × S 17 0.33 0.13–0.60 0.24 ± 0.01

Note: Data are shown as M ± SE from 500 simulated models.
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and Phen were well predicted by spectral data (R2 for cross valida-
tion: 0.75, 0.84 and 0.70, respectively). We found that the spectral 
region for the best prediction of Ψπ was 950–2,400 nm. This wave-
length range included the minor water absorption features centered 
at 970 and 1,200 nm as well as those of known osmolytes likely in-
volved in osmotic regulation (Cotrozzi et al., 2017) in the prediction 
of Ψπ in lettuce leaves. ChlSPAD is an index based on the absorbance 
of the leaf at two specific wavelengths (i.e., 650 and 940 nm), and 
in accordance with these wavelength ranges, ChlSPAD was best pre-
dicted using the 500–900 nm, including both the pigment absorp-
tion features and the red-edge. ChlSPAD modeling outputs are in 
accordance with the prediction of Chl content in lettuce by Neto et 
al. (2017). Also, Phen modeling, which showed the best predicting 

region from 1,100 to 2,400 nm, confirmed the importance of specific 
absorption features found in previous studies (Couture et al. 2016; 
Kokaly & Skidmore, 2015; Rubert-Nason et al., 2013). By combining 
high-fidelity reflectance measurements, standard physiological and 
biochemical analyses and robust statistical modeling, we demon-
strate the potential to expand prediction capabilities of spectral data 
for leaf traits necessary for the early detection of plant responses 
when exposed to different abiotic stress environments. However, 
development and validation of further spectral models are required 
since these outcomes are potentially species- and environment spe-
cific. The prediction of these physiological and chemical responses, 
in combination with the hyperspectral phenotyping approach, has 
the potential to provide multiple layers of stress-specific information 

F I G U R E  2   (a,d,g) Observed versus partial least squares regression (PLSR)-predicted values of osmotic potential (Ψπ), chlorophyll content 
(ChlSPAD) and total phenols (Phen) in lettuce; error bars for predicted values represent the standard deviations generated from 500 simulated 
models; dashed line is 1:1 relationship; model goodness-fit (R2), root-mean-square error (RMSE), bias and %RMSE for cross validation data 
generated using 80% of the data for calibration and 20% for cross validation are reported. (b,e,h) Mean (solid), 5th and 95th percentile 
(dotted) of standardized coefficients and (c,f,i) variable importance for projection values (VIP) by wavelengths for PLSR-models predicting 
Ψπ, ChlSPAD and Phen in lettuce
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to growers, including identification of stress and the also the iden-
tification of underlying physiological responses to stress, that can 
increase the efficiency of management responses.

Using both standard measurements and spectra-derived leaf 
traits (by both indices and PLSR-models), variations of key features 
such as biomass production and allocation, photosynthetic perfor-
mance, water status, leaf morphology, chlorophyll content, macro-
nutrient composition, and phenolic concentration were investigated 
to assess stress conditions in plants exposed to the variable environ-
ments. As expected, AB, an important crop feature, was enhanced 
by high light intensity and fertilization, but decreased under ex-
posure to high salinity levels. The highest AB levels were found in 
plants exposed to So light at I+, which, unexpectedly, showed high 
AB also in presence of F− and S+. These outcomes highlight that dif-
ferent combinations of stressors can differently, and non-additively, 
affect plant growth (Landi et al., 2019; Pandey et al., 2017; Podda 
et al., 2019; Zhang et al., 2018). The different AB production of let-
tuce under variable environmental conditions did not seem due to 
divergent resource allocations between shoots and roots: among 
the factors, salinity was the most influential on AB:BB. While plants 
exposed to So light at I + showed higher AB, they were also the only 
ones showing a lower photosynthetic radiation use efficiency (sPRI, 
negatively related to AB). Reduced PRI is usually associated with re-
duced net CO2 uptake and the maximum efficiency of photosystem 
II photochemistry in the light, and increased levels of the photopro-
tective xanthophyll cycle pigment zeaxanthin (Gamon et al., 1997). 
These reductions of sPRI where confirmed by the reductions in N, 
and consequently by the increases of C:N. Foliar nitrogen is strongly 

related to the photosynthetic capacity of leaves given its role in the 
light harvesting pigments and photosynthetic machinery, especially 
the enzyme RuBisCo (Evans, 1989).

At the same time, plants exposed to So light at I+ had a higher 
water content (NDWI, positively related to AB), especially under 
salinity which induced a more pronounced osmoregulation com-
pared to the other environmental conditions (Ψπ dropped mostly). 
It is known that a decrease in Ψπ is one of the main adjustments 
under salinity (Negrão, Schmöckel, & Tester, 2017). We can, thus, 
conclude that AB production of lettuce leaves was more affected by 
the amount of water than the photosynthetic performance, although 
these physiological processes seemed to be partially connected by a 
negative relationship. This interpretation was partially supported by 
the highest levels of Chl content found in plants exposed to Tu light 
or S+, which overall showed lower levels of AB. The increase of Chl 
content under S+ has been previously reported on several lettuce 
genotypes (Xu & Mou, 2015). The lack of a light intensity effect on 
Chl content, actually, leads us to interpret the decrease of sPRI in 
plants under SO light at I+ as a photosynthetic regulation to prevent 
oxidative damage (Foyer & Shigeoka, 2011) instead as an impairment 
of the photosynthetic apparatus.

Leaf thickness was strongly and positively related to water con-
tent (r = .75), as the effects induced by the interactions of light with 
light intensity or salt on LMA were similar to the ones on NDWI, 
although only LMA also showed a significant F × S interaction. Taking 
into account these three significant binary-combinations on LMA, 
we can conclude that plants under So light were more sensitive to 
light intensity (I−: lowest thickness; I+: highest thickness); whereas 

TA B L E  3   P values of four-way analysis of variance for the effects of supplemental light type (L), supplemental light intensity (I), 
fertilization (F), salinity (S) and their interactions on leaf traits of lettuce

 df AB AB:BB sPRI NDWI Ψπ ChlSPAD LMA N C:N Phen

L 1 0.002 0.858 <0.001 <0.001 0.243 <0.001 0.057 <0.001 <0.001 <0.001

I 1 <0.001 0.024 <0.001 <0.001 <0.001 0.404 <0.001 <0.001 <0.001 <0.001

F 1 0.125 <0.001 0.101 0.502 0.040 0.841 0.924 0.414 0.683 0.002

S 1 <0.001 0.628 0.955 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

L × I 1 0.083 0.581 <0.001 <0.001 0.003 0.290 <0.001 <0.001 <0.001 0.001

L × F 1 0.025 0.281 0.779 0.391 0.400 0.020 0.430 0.059 0.109 0.134

L × S 1 0.780 0.020 0.044 0.028 0.284 0.243 0.016 0.420 0.244 0.064

I × F 1 0.028 0.089 0.124 0.537 0.806 0.343 0.098 0.070 0.237 0.289

I × S 1 0.023 0.011 0.048 0.979 <0.001 0.472 0.661 0.640 0.062 <0.001

F × S 1 0.005 <0.001 0.511 0.859 0.536 0.805 0.007 0.420 0.431 0.001

L × I × F 1 0.016 0.262 0.357 0.177 0.932 0.891 0.111 0.957 0.695 0.066

L × I × S 1 0.386 0.213 0.013 0.286 0.003 0.965 0.347 0.004 <0.001 0.610

L × F × S 1 0.939 0.429 0.018 0.765 0.306 0.433 0.412 0.070 0.175 0.748

I × F × S 1 0.005 0.141 0.073 0.605 0.010 0.865 0.206 0.724 0.414 0.683

L × I × F × S 1 <0.001 0.193 0.093 0.913 0.312 0.406 0.278 0.507 0.948 0.703

Note: df represents the degrees of freedom. Significant values (p < .05) are shown in bold and marginally significant values (p < .095) are shown in 
italics.
Abbreviations of leaf traits: AB, above biomass; AB:BB, above:below biomass ratio; sPRI, photosynthetic reflectance index (scaled); NDWI, 
normalized difference water index; Ψπ, osmotic potential; ChlSPAD, SPAD based chlorophyll content; LMA, leaf mass per area; N, nitrogen; C:N carbon 
to nitrogen ratio; Phen, total phenols.
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F I G U R E  3   Variation in leaf traits of lettuce exposed to different supplemental light types (sodium, So, left side; tungsten, Tu, right side), 
supplemental light intensities (low, I−, black lines; high, I+, blue lines), fertilization (low, F−, white fill; high, F+, gray fill) and salinity (no salt, S−, 
no pattern; salt, S+, pattern). The box plots display the median for each trait by treatment (horizontal line), the 5th and 95th percentiles (boxes) 
and the range (whiskers). For abbreviations of leaf traits see Table 3
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plants under Tu light were more sensitive to salinity (S−: medium-low 
thickness; S+: medium-high thickness), although also for these 
plants was found a light intensity effect opposite to plants exposed 
to So light. Finally, Phen, compounds that have a great interest for 
their consumer health properties due to their antioxidant capacity 
(Hollman, 2001), decreased under S+, while were triggered under 
high light intensity, especially So type light, and low fertilization. 
Similar and contrasting results have been reported on lettuce phe-
nols under salinity (Kim et al., 2008; Pérez-López et al., 2015; Sgherri 
et al., 2017) While we are unsure of the mechanism explaining high 
growth of lettuce under Tu light at I+, F+ and S−, we suggest that 
spectral data can affirm that chemical, anatomical, and physiological 
responses to So, I+, F+, S− environmental conditions that increased 
both the productivity and quality of lettuce.

In conclusion, we found that hyperspectral information success-
fully identified crop status in multi-factor experiments and detected 
specific responses to stress conditions prior to the onset of visual 
symptoms. In addition, a novel application of the hyperspectral data, 
we present is the non-destructive, rapid, and concomitant quantifi-
cation of specific physiological, morphological, and biochemical re-
sponses of lettuce plants under variable environmental conditions. 
Outcomes and approaches presented in this study could have ap-
plications in numerous scientific fields (e.g., precision agriculture, 
robotic monitoring, plant phenotyping) with benefits not only for fur-
ther plant science research, but also for growers to achieve greater 
crop yield and quality (and incomes), with lower environmental im-
pact. While this approach can help to monitor plant function over 
large geographic regions if scaled to remote collections from air- or 
space-borne platforms (Cotrozzi et al., 2018), piloted and unpiloted 
aircraft approaches to protected agrosystems are less applicable be-
cause of the structures used for protection. In this study, however, 
we highlight the utility of scaled-down vegetation spectroscopy as 
a management and monitoring tool in a protected agrosystem and 
suggest that integration of this approach into intelligent and auto-
mated greenhouses and other protected systems could greatly en-
hance management efficiency and increase crop quality and yield.
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