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A B S T R A C T

Understanding plant disease resistance is important in the integrated management of Phytophthora infestans,
causal agent of potato late blight. Advanced field-based methods of disease detection that can identify infection
before the onset of visual symptoms would improve management by greatly reducing disease potential and
spread as well as improve both the financial and environmental sustainability of potato farms. In-vivo foliar
spectroscopy offers the capacity to rapidly and non-destructively characterize plant physiological status, which
can be used to detect the effects of necrotizing pathogens on plant condition prior to the appearance of visual
symptoms. Here, we tested differences in spectral response of four potato cultivars, including two cultivars with
a shared genotypic background except for a single copy of a resistance gene, to inoculation with Phytophthora
infestans clonal lineage US-23 using three statistical approaches: random forest discrimination (RF), partial least
squares discrimination analysis (PLS-DA), and normalized difference spectral index (NDSI). We find that cul-
tivar, or plant genotype, has a significant impact on spectral reflectance of plants undergoing P. infestans in-
fection. The spectral response of four potato cultivars to infection by Phytophthora infestans clonal lineage US-23
was highly variable, yet with important shared characteristics that facilitated discrimination. Early disease
physiology was found to be variable across cultivars as well using non-destructively derived PLS-regression trait
models. This work lays the foundation to better understand host-pathogen interactions across a variety of
genotypic backgrounds, and establishes that host genotype has a significant impact on spectral reflectance, and
hence on biochemical and physiological traits, of plants undergoing pathogen infection.

1. Introduction

Understanding plant disease resistance is critical for successful in-
tegrated disease management. This is particularly true for potato,
where cultivars have high levels of variation in major disease re-
sistance. Late blight of potato, caused by the oomycete pathogen
Phytophthora infestans, is one of the most devastating diseases to sus-
tainably and effectively control. Considerable efforts have been made to
advance disease resistance breeding in conventional programs through
the ingression of QTLs from diploid potatoes [1,2] and genetic ma-
nipulation [3,4]. Despite these advances, new potato cultivar adoption
is a challenging due to phenotypic variation selected for different field,
storage, and processing sectors. Growers rely upon chemical control for
late blight management [5] due to the lack of effective resistance in
commercially desirable cultivars and high potential risk of crop yield
and quality loss. Further complicating integrated late blight

management, potato cultivars can exhibit variable resistance to late
blight across plant organs. Foliar and tuber plant parts can have dif-
ferent levels of resistance, such as the cultivar Umatilla, which has
susceptible foliage and resistant tubers. Other cultivars exhibit foliar
resistance with little to no tuber resistance [6].

Reflectance spectroscopy has emerged as an effective approach for
fast, non-destructive estimation of a wide variety of plant chemical,
morphological, and metabolic traits in living tissue [7–17]. Changes in
leaf optical properties arise from the interaction of light, chemical
bonds, and leaf cell structure. This phenomenon allows us to directly
estimate foliar structure, plant chemical composition, water con-
centration, and metabolic status from reflectance measurements in the
visible (VIS), near-infrared (NIR), and shortwave infrared wavelengths
(SWIR, collectively 350−2500 nm). To do this, field spectrometers,
handheld or otherwise portable devices that measure light reflectance
continuously across a range of wavelengths, are used. These
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measurements differ from other broad-band devices and cameras by
covering a large spectral range (visible to SWIR) at narrower intervals
(typicall 3−8 nm intervals).

Near infrared spectroscopy has been used since the early 2000s to
discriminate between crop cultivars in melon [18], coffee [19], wheat
[20], oilseed rape [21], cannabis [22], and tea [23]. One of the first
studies to include shortwave infrared (SWIR, 1200−2500 nm) wave-
lengths was Rao et al., who found these wavelengths to be important for
discrimination among cultivars of rice, cotton, chili pepper, and su-
garcane [24]. This study also noted that cotton cultivars that appear
visually similar (in visible wavelengths, 400−700 nm) could have
vastly different reflectance in other spectral regions.

Plant resistance responses, such as reduced colonization, reduced
sporulation, and general reduction in disease severity may be identifi-
able in spectral reflectance [25]. The phenomenon of tolerant cultivars
succumbing to infection yet having a different spectral reaction to in-
fection than a susceptible cultivar has been in a handful of publications
across plant and pathogen species [26–28]. Cultivar has also been
found to influence the accuracy of abiotic stress classifications. Pre- and
post-symptomatic spectral response to apple bruising has been found to
be variable across cultivars despite almost identical visual damage
[29,30].

In potato production, cultivar identity is currently policed through
the seed potato certification process which includes visual inspections
and periodic genotypic testing [31]. Cultivar purity requires consider-
able expertise and has become more difficult in recent years due to
increased variety in global commercial production. Different potato
cultivars may have minor to moderate physiological differences, such as
leaf shape and color, or biochemical differences, all of which may im-
pact spectral reflectance. Reflectance spectroscopy can be used to dif-
ferentiate between healthy potato cultivars with accuracy ranging from
56 to 90%, depending on cultivar [32]. Couture et. al established that
accurate Potato virus Y detection was possible regardless of cultivar, but
that potato cultivars can have different physiological and biochemical
responses to infection [32].

The objectives of this work were to (1) determine the effect of
cultivar on spectroscopic late blight detection, (2) quantify the differ-
ence in cultivar response to P. infestans infection using remotely sensed
biochemistry and physiology metrics, (3) identify spectral regions most
important for detection and discrimination with three different statis-
tical methods.

2. Materials & methods

2.1. Plant and pathogen materials

‘Katahdin,’ ‘Snowden’, ‘SP951,’ and ‘Russet Burbank’ potatoes from
the Wisconsin Seed Potato Certification Program were grown for four
weeks from tissue culture cuttings in pathogen-free growth chambers
with a 12 h photoperiod under 24 °C daytime temperatures and 21 °C
night temperatures. ‘SP951’ shares a genetic background with
‘Katahdin,’ but was transformed to contain a single copy of the Rb late
blight resistance gene (from wild potato Solanum bulbocastanum) [3]. A
representative P. infestans isolate of US-23 clonal lineage was collected
from an infected potato field in 2017 in Wisconsin, purified, and
maintained on Rye-A agar plates for three-weeks at 18 °C. Cultures were
placed at room temperature for 24−48 h to better induce sporulation
prior to inoculation. A 5-mm agar plug was excised from cultures in
areas with concentrated sporulation and inoculated onto the adaxial
surface of the leaf. Humidity chambers were used to ensure 100 %
ambient humidity to support the infection process. Two treatments
were used in this study: non-inoculated Rye A agar plug inoculation
(agar control) and US-23 inoculation. Ten replicates were used per
treatment and cultivar combination and two leaves measured per plant.
Disease was rated as 0–5, with 0=no disease and 5=severe disease at
each measurement using a modified Horsfall-Barratt scale. Infection

was confirmed with both visual assessments and an ELISA-based im-
munostrip test for the genus Phytophthora (Agdia, Elkhart, IN). Data
used in this analysis were collected over the course of three in-
dependent experiments.

2.2. Reflectance measurements

Contact leaf reflectance was measured using a high-spectral-re-
solution SVC HR-1024i (350–2500 nm) field spectroradiometer
(Spectra Vista Corporation, Schnectady, NY, USA). All measurements
were taken from the leaf adaxial surface using a leaf-clip assembly at-
tached to a plant probe with a halogen light source, using 99 % spec-
tralon as white reference (Labsphere, North Sutton, NH). Reflectance
was measured on two locally-inoculated leaves per plant with two
spectra averaged per leaf location. Measurements were taken next to
the inoculation zone, but not on top of the inoculation plug. Reflectance
curves were interpolated to 1 nm spacing from the native 3−8 nm re-
solution, and reduced to 400–2400 nm by removing the wavelengths
with higher relative noise at the edges of spectra [10,11,33]. Baseline
measurements were taken immediately prior to inoculation, and then at
24 h intervals for the following 5–7 days, until disease progressed to
sporulation. At each time point images were taken with a Nikon digital
camera.

2.3. Data preparation

Spectral measurements with anomalous low reflectance or ab-
normalities due to measurement error were identified manually and
removed. Inoculated plants that did not achieve disease rating of 4 or
greater by the end of the study period were removed. Disease time was
defined categorically for statistical analyses as follows: “early infec-
tion”- late blight inoculated leaves at time points within 24 h of in-
oculation, “biotrophy” - late blight inoculated leaves at time points
occurring after 48 h until the last time point measured before disease
symptoms appeared, “necrotrophy” - late blight inoculated leaves
during time points after which disease symptoms had become visible
but before sporulation occurred, and “sporulation” - inoculated leaves
during time points where both necrosis and sporulation were visible.
Disease time was defined for control plants as the approximate range of
time corresponding to the majority of diseased-treated plants pro-
gressed into the next infection progression stage. Data were binned so
that the interaction of treatment, cultivar, and time could be estimated
while accounting for the observation that infection and disease severity
did not progress uniformly for all individuals. This allowed for spectral
responses caused by measurement and handling over time to be dif-
ferentiated from those caused by infection. Due to low disease incidence
in the first experiment, there was an unequal number of control and
infected samples (5X). To reduce bias, 10 control samples per cultivar
per disease time point were randomly selected to be used in further
analyses resulting in a total n of 1330 spectral measurements.

2.4. Data analysis

2.4.1. Univariate analysis
All analyses were conducted in R. Normalized difference spectral

indices (NDSIs, equation 1) were calculated for all possible combina-
tions of wavelengths (∼4 million combinations) to identify which
combinations best correlated (Pearson correlation) with change in in-
fection status. NDSIs were calculated across all disease times for each
cultivar as well as within each disease stage. The NDSI correlations with
disease status (infected vs control) were then plotted as heatmaps to
visualize important spectral regions for distinguishing infection status
and compare responses across cultivars and stages. Wavelengths of the
top 0.1 % (∼4000) most correlated NDSIs by Pearson correlation for
late blight disease stages were identified and their relative frequency of
occurrence and plotted. The relative frequency of a wavelength by
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cultivar and developmental stage was plotted to visualize spectral dis-
ease progression.

2.4.2. Multivariate analysis
Permutational multivariate analysis of variance using distance ma-

trices (PERMANOVA) was conducted to generate “pseudo” F and p-
values for which to test significance influence of both treatment and
cultivar on spectral reflectance using the R package vegan [34]. The
PERMANOVA randomization was restricted (blocked) by experiment
and stratified by sample ID and disease time to account for the repeated
measures nature of the experiment [35]. Principal coordinates analysis
(PCoA) was used to visualize broad spectral differences between in-
fected and non-infected samples of the four cultivars in the study using
spectral reflectance as the predictor variables using the R package vegan
[34]. This method uses a dissimilarity matrix calculated using Eu-
clidean distance to transform a large number of possibly correlated
predictor variables into a smaller number of uncorrelated latent vari-
ables, or principal coordinates, reducing the dimensionality of the data.

Two discrimination methods were then used to classify infection by
cultivar using full-spectrum VSWIR data: partial least squares dis-
criminant analysis (PLS-DA) and ensemble random forest classification
[36] with the R packages pls and caret [37,38]. “Early infection” and
“biotrophy” disease time points were binned together into a “pre-
symptomatic” category and “necrotrophy” and “sporulation” disease
time points were binned together into a “post-symptomatic” category to
increase the number of observations category for the classification. PLS-
DA discriminates groups based using high dimensional and highly
collinear data through the projection of latent variables through the
response and predictor variables to maximize explanation of the de-
pendent variable as a function of an optimized reduced set of compo-
nents [39,40]. PLS-DA analyses were performed using a 70:30 permu-
tational approach to estimate cross-validation and uncertainty
following Couture et al. and Herrmann et al. [32,41].

We compared PLS-DA results to results of random forest classifica-
tions. Random forest (RF) classification is a non-parametric, ensemble
machine learning that uses multiple decision trees to classify data and is
well suited to spectral data analysis [36,42,43,60]. For random forest
classification, the dataset was resampled to a 10 nm resolution (202
wavebands) with the prospectr package in R [44] to yield an optimal
number of predictor variables and to reduce collinearity between wa-
velengths. Random forest was applied to first order derivative (FOD)
spectra in order to enhance spectral features, reduce systematic dif-
ferences, and potentially increase classification accuracy [45]. We
performed this comparison due to the inherent nature of tree-based
models to consider variables sequentially, making them handy for
considering interactions without specifying them. In contrast, PLS-DA
does not directly include interactions although the nature of PLS-DA
components does capture interactions. RF differ from PLS-DA in that
the specific weighting and direction of individual independent variables
is not readily identifiable, although the relative importance of a vari-
able can be determined through its prominence within the ensemble of
trees. Interactions that are useful for prediction, such as cultivar, are
easily incorporated with a large enough forest (ensemble). Two random
forest classifications were fit, one including cultivar as a predictor
variable, and one without to compare the effect of cultivar on classifi-
cation accuracy.

The two parameters primarily responsible for random forest model
performance, the number of randomly selected predictors to choose
from at each split (mtry) and number of trees generated to yield a full
ensemble (n-tree) were optimized in an 80:20 training/testing data
subset and 10-fold repeated internal cross-validation to estimate out-of-
box accuracy. This process was repeated 10 times and the mean accu-
racy and kappa [46] were calculated in order to gauge model perfor-
mance. Kappa is a model assessment that can be understood as model
accuracy accounting for accuracy due to random chance and takes on a
value between 0–1 [46]. Kappa values can be interpreted using

standards established in Landis & Koch (1977): 0= poor, 0.1-0.2 =
slight, 0.2-0.4 = fair, 0.4-0.6 = moderate, 0.6-0.8= substantial, 0.8–1
= near perfect. Final model parameters used were n-tree=500 with
mtry varying by model. Average test accuracy kappa, overall accuracy,
false negative rate, and false positive rate were used to determine model
accuracy.

Foliar nitrogen, total phenolics, sugar, starch, and leaf mass per area
(LMA) were estimated from spectra using partial least squares (PLS)
regression calibrations from Chlus et al. (in preparation), a well es-
tablished method in functional ecology [10–12]. LMA is an indicator of
leaf dry-mass investment and relates to light interception and leaf
longevity [47]. Lower LMA values indicate reduced leaf thickness,
meaning that the leaf is allocating more resources to photosynthesis or
defense compounds than structural compounds. Allocating more re-
sources towards leaf structure (higher LMA) can protect leaves from
desiccation or herbivory [47]. The normalized difference water index
(NDWI) was calculated using the relative difference in reflectance at
wavelengths 857 nm and 1241 nm as an estimate of leaf water con-
centration [48]. A two-way, repeated measures ANOVA was fit using a
mixed effect model with maximum likelihood estimation method for
each of the remotely sensed metrics, total phenolics, sugar concentra-
tion, starch concentration, nitrogen concentration, NDWI, and LMA
using the R package nmle [49]. The R package emmeans was to elucidate
interaction effects for cultivar, treatment, and the interaction of cultivar
and treatment across time [50].

3. Results

3.1. Cultivar affects spectral profile across all disease time stages

Disease progressed similarly for all treatments included in this
study. No significant differences were identified in area under the dis-
ease progress curve (AUDPC) between late blight inoculated cultivars
(Fig. S1). AUDPC was not significantly different between ‘Katahdin’ and
‘SP951’ cultivars (t-test, p-value 0.71). Principle coordinate analysis
(PCoA) showed a strong cultivar effect on spectral reflectance with a
high degree of separation between ‘Russet Burbank’ and ‘Snowden’
potatoes from ‘Katahdin’ and ‘SP951’ potatoes, regardless of infection
status (Fig. 1). Visualizing the data as such, the infection effect is
masked due the strong cultivar influence (Fig. S2). ‘Katahdin’ and
‘SP951’ share a genetic background and showed a high degree of
overlap between their respective spectral profiles. As disease stage
progressed, inoculated and non-inoculated plants became more dif-
ferent from each other for all four cultivars (Fig. 1). Across all four
cultivars, infected and non-infected samples showed separation at all
four disease time stages (Fig. 1). The first two principal coordinates
explained 90+% of total of the variation seen in the spectral data.

Cultivar had a strong impact on spectral reflectance but it was dif-
ficult to distinguish between different cultivars with visible range re-
flectance alone. ‘Katahdin’ and ‘SP951’ plants consistently had higher
reflectance in the NIR than ‘Snowden’ and ‘Russet Burbank’ potatoes
(Fig. S3). A weakly significant treatment effect (pseudo
pvalue=0.048), a highly significant cultivar effect (pseudo
p < 0.001), and a weakly significant interaction effect (p= 0.037)
were seen across all time points in the study (Table S1). PERMANOVA
was calculated within each disease time stage to understand effects of
disease time on treatment and cultivar interactions. During early in-
fection, a highly significant cultivar effect was seen (p < 0.001) but
there was no evidence for a significant treatment or interaction effect
(Table S1). Significant treatment, cultivar, and interaction effects
during biotrophy, necrotrophy, and sporulation were seen. This in-
dicates that the impact of both cultivar and inoculation on vegetation
reflectance differs depending on the treatment and cultivar combina-
tion.

NDSI heat maps (Fig. 2) were generated to visualize the broad
changes in vegetation reflectance caused by infection. Overall, the
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cultivars showed a great deal of variation in which NDSIs showed the
greatest change during infection. When all cultivars were compared
across all disease time points, few noticeably different regions could be
seen (Fig. 2A). When all cultivars were combined and compared across
individual disease time stages (Fig. 2F, K, P, U), few highly changed
regions can be seen until sporulation (Fig. 2U). Binning together all
disease time points, the four cultivars showed different spectral re-
sponses to inoculation (Fig. 2B–E). When fit across all disease time
points, the wavelength combinations most strongly associated with
infection in ‘Katahdin’ plants utilized visible bands in conjunction with
all areas of the spectra (VNIR through SWIR), as well as regions in the
SWIR (Fig. 2B). Fine narrow band regions of the NIR also showed a
difference in reflectance. ‘SP951’ plants, which share a genetic back-
ground with ‘Katahdin’ plants, also differed in SWIR wavelengths>
2000 nm but differed from ‘Katahdin’ plants in showing a much higher
associations with NIR wavelengths and a lesser impact of VIS wave-
length interactions with the full spectra (Fig. 2C). Overall, ‘Katahdin’
and ‘SP951’ plants appeared to have similar spectral responses to in-
fection, but infection caused stronger change in the NIR wavelengths of
‘SP951’ than ‘Katahdin’.

Infection in ‘Russet Burbank’ plants showed a significant correla-
tions between infection status and NDSIs using SWIR bands, but overall,
had a much broader influence over in the NIR, especially NDSIs using
longer NIR wavelengths with SWIR and VIS wavelengths. Fine narrow
band features in the NIR and VIS differed considerably by infection
(Fig. 2D). In contrast, infection led to differences at very narrow wa-
velengths in ‘Snowden’ plants, with a specific effect on narrow band
NIR-vs-NIR interactions (Fig. 2E). A weak effect was seen in interactions
of the SWIR wavelengths in the 2000s that was shared amongst the
cultivars.

NDSIs were fit for each disease time point for all cultivars combined
to identify whether there were general responses across cultivars
(Fig. 2, bolded box). During early infection (Fig. 2G–J) and biotrophy
(Fig. 2L–O), SWIR narrowband features were most strongly affected by
infection in all cultivars. These narrow band features are likely asso-
ciated with changes in water content and potentially nitrogen

concentration and structural carbohydrates (Serbin et al., 2012, 2014).
During early infection, all four cultivars showed a shared response in
the narrowband features of the SWIR wavelengths, with greatest
overlap between ‘Katahdin’ and ‘SP951’ (Fig. 2G–J). ‘SP951’ plants
showed a greater reaction in the interactions of the NIR wavelengths
than ‘Katahdin’ plants that was shared with ‘Russet Burbank’ and
‘Snowden’ plants. During this stage, SWIR features in the wavelength
region approaching 2400 nm were most important, with a strong fea-
ture developing in the NIR. During sporulation, the same strong SWIR
feature distinguished necrotrophy from non-inoculated control leaves,
along with a strong impact in visible wavelengths, as would be ex-
pected.

3.2. Cultivars differ in remotely sensed biochemical and physiological
indices at different disease time stages

To gain a better understanding of how cultivars respond to early
stage infection, spectrally-derived biochemical and physiological in-
dices, derived via PLS-regression, were calculated and compared.
Overall, disease time had a highly significant effect on all non-de-
structively sensed metrics except for NDWI where no evidence of a
significant effect was seen (Table S2, Fig. S4). There was a highly sig-
nificant cultivar effect on concentration of total phenolics, sugars, LMA,
and NDWI, but no evidence of a significant effect on starches and ni-
trogen concentration (Table S2). Treatment had a significant effect on
phenolics and starch concentration. When taking into account disease
time, a significant treatment and disease time interaction was seen for
phenolics, starches, nitrogen, LMA, NDWI, and a weakly significant
effect on sugars. A moderately significant three-way interaction of
disease time, cultivar, and treatment was seen on NDWI and weakly
significant for sugars and LMA, indicating that these traits changed
across cultivar and treatment with disease time (Table S2).

Pairwise comparisons accounting for the random effect of disease
time for treatment over levels of disease time and cultivar (Table S3,
annotated on Fig. S4) and for cultivar over levels of disease time and
treatment (Table S4) were performed to better understand how the

Fig. 1. Principle Coordinate Analysis (PCoA) using euclidean distance showing strong cultivar effect on spectral reflectance regardlss of infection status over disease
time. ‘Katahdin’ and ‘SP951’ share a genetic background and showed a high degree of overlap between their respective spectral reflectance.
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differences and similarities in how cultivars respond to disease. For the
cultivar pairwise comparisons, only comparisons that had a significant
difference between infected leaves without a significant difference be-
tween the pairwise comparison of control leaves (or vice versa) were
considered to be noteworthy. Cultivars likely have different base con-
centrations of phenolics, and the stress of time course measurement
could potentially change values, which is why it is important to con-
sider one pairwise comparison (such as infected ‘Katahdin’ vs infected
‘SP951’) in light of the alternate pairwise comparison (control
‘Katahdin’ vs control ‘SP951’).

Phenolics concentration differed significantly between infected and
healthy ‘Katahdin’ leaves during early infection, but not for ‘SP951’ or
any of the other cultivars (Table S3). During this disease time stage,

‘Katahdin’ and ‘SP951’ infected leaves had a significantly different
phenolics concentration (pvalue=0.01) from each other but the con-
trol leaves did not (pvalue= 0.28, Table S4). Infected ‘SP951’ leaves
had a significantly different leaf sugar concentration than infected
‘Snowden’ leaves (pvalue=0.011) while a pairwise comparison of
control leaves yielded no significant difference between them
(pvalue=0.029, Table S4). Sugar concentration was weakly sig-
nificantly different between infected and control leaves for both
‘Katahdin’ and ‘SP951’ leaves (Table S3). There was no difference in
starch concentration between treatments (control and infected leaves)
during early infection for any of the four cultivars (Table S3), but in-
fected ‘Russet Burbank’ leaves had significantly different concentration
of phenolics from both ‘Katahdin’ and ‘Snowden’ leaves (pvalues 0.024

Fig. 2. Normalized difference spectral index (NDSI) heat maps across (A) all disease time stages and cultivars, (B–E) individual cultivars across all disease time
stages, (F, K, P, U) all cultivars across individual disease time stages, (G–J) individual cultivars during early infection, (L–O) individual cultivars during biotrophy,
(Q–T) individual cultivars during necrotrophy, (V–Y) individual cultivars during sporulation. Red values indicate high absolute value of Pearson’s correlation with a
change in infection status (non-inoculated vs. inoculated).
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and 0.044 respectively) while there was no significant difference in
control leaves (Table S4). ‘Russet Burbank’ infected leaves had sig-
nificantly different nitrogen concentration than control ‘Russet
Burbank’ leaves (pvalue= 0.025), infected ‘SP951’ leaves
(pvalue= 0.011), and infected ‘Snowden’ leaves (pvalue=0.006,
Table S3, S4). LMA and NDWI were weakly significantly different be-
tween infected and control ‘Russet Burbank’ leaves as well (pvalues
0.047 and 0.0608 respectively). NDWI was significantly different be-
tween infected ‘SP951’ leaves and both control ‘SP951’ leaves
(pvalue= 0.0436) and infected ‘Katahdin’ leaves (pvalue= 0.011).

During biotrophy, ‘Katahdin’, ‘SP951’, and ‘Snowden’ had highly
significant differences in phenolics concentration between infected and
control leaves (Table S3). Interestingly there were highly significant
differences between ‘Russet Burbank’ control leaves and control
‘Katahdin’ (pvalue= 0.0005), and ‘SP951’ (pvalue<0.001), leaves,
that were not seen in pairwise comparison of respective infected leaves
(Table S4). A similar pattern was seen with LMA, in which the pairwise
comparison between control ‘Russet Burbank’ leaves and both control
‘Katahdin’ (pvalue=0.009) and control ‘SP951’ (pvalue= 0.0013)
leaves. ‘Katahdin’ and ‘Snowden’ control leaves were significantly dif-
ferent from each other as well (pvalue= 0.0019), but the pairwise
comparison of their respectively infected leaves was not
(pvalue= 0.09). The only other noteworthy trait comparison during
biotrophy was the comparison between ‘Russet Burbank’ infected and
control leaves, which yielded significantly different starch, nitrogen,
and LMA (Table S3). Infected ‘Russet Burbank’ leaves had significantly
different nitrogen concentration than infected ‘Katahdin’
(pvalue= 0.022) and ‘Snowden’ (pvalue= 0.001) leaves (Table S4).

‘SP951’ infected leaves had significantly different total phenolics,
sugar, starch, and NDWI from non-infected leaves during necrotrophy
but ‘Katahdin’ did not. Infected and control ‘Katahdin’ leaves had

significantly different LMA from each other (pvalue= 0.017, Table S4).
Control ‘Katahdin’ leaves had significantly different phenolics con-
centration from control ‘SP951’ (pvalue= 0.0395) and control
‘Snowden’ (pvalue=0.001) leaves but there was no significant differ-
ence between respectively infected leaf comparisons. The same pattern
was seen regarding LMA between control ‘Katahdin’ and ‘Snowden’
leaves (pvalue< 0.0001). Sugar concentration was significantly dif-
ferent between infected ‘Snowden’ leaves and infected ‘SP951’ leaves
(pvalue=0.017) but not in a comparison of their respective control
leaves (pvalue= 0.88). Starch concentration was significantly different
between control ‘Russet Burbank’ leaves and control ‘SP951’ leaves
(pvalue=0.03) but not in a comparison of their respective infected
leaves (pvalue=0.91). NDWI was highly significantly different be-
tween infected ‘Katahdin’ and ‘SP951’ leaves (pvalue=0.0004) but not
between control leaves (pvalue=0.2388). Surprisingly, sporulation
yielded the least number of significant differences between infected and
control leaves amongst the characterized traits. Infected ‘Russet
Burbank’ leaves had weakly significantly different phenolics con-
centration and NDWI from control leaves (Table S3). Both ‘Katahdin’
and ‘SP951’ showed weakly significant differences between infected
and control leaves. Infected ‘Katahdin’ leaves had significantly different
sugar concentration from infected ‘SP951’ leaves during sporulation but
not between their control leaves (pvalue=0.023, Table S4).

Pairwise comparison of biochemical trait concentration and phy-
siological metrics (accounting for interactions of cultivar and disease
time) showed some variation between ‘Katahdin’ and ‘SP951’ plants
across the different disease time stages (Fig. S4, Table S2). Phenolics
differed between non-inoculated control and infected ‘Katahdin’ leaves,
but not between control and infected ‘SP951’ leaves during early in-
fection. During necrotrophy, the opposite was true, with phenolics
concentration differing between ‘SP951’ control and infected leaves but

Fig. 3. A) PLS-DA absolute value of standardized coefficients by wavelength overlaid with top 20 VIPs from three class RF discrimination (without cultivar) B)
Distribution of top 0.1 % of most correlated NDSI wavelengths from all disease time points.
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not ‘Katahdin’ leaves (Table S4). Both were significantly different
during biotrophy and neither were significantly different during spor-
ulation. During biotrophy, infected ‘Katahdin’ and ‘SP951’ leaves had
significantly different phenolics concentrations (pvalue= 0.01) from
each other but the non-infected control leaves did not (pvalue= 0.28,
Table S4). Sugar concentration was weakly significantly different be-
tween control and infected leaves of both ‘Katahdin’ (pvalue= 0.0514)
and ‘SP951’ (pvalue=0.0327), respectively, during early infection, but
only between ‘SP951’ control and infected leaves during necrotrophy
(pvalue 0.001). Sugar concentration of infected ‘Katahdin’ and ‘SP951’
leaves was significantly different, but there was no significant differ-
ence when compared to non-infected leaves. Starch concentration was
significantly different between the non-infected control and infected
‘SP951’ leaves during necrotrophy and sporulation, but not between
‘Katahdin’ leaves. NDWI was not significantly different between
‘Katahdin’ control and infected leaves during any disease time stage but
was for ‘SP951’ control and infected leaves during early infection and
necrotrophy. NDWI was highly significantly different between infected
‘Katahdin’ and infected ‘SP951’ leaves (pvalue= 0.0004) but not be-
tween control ‘Katahdin’ and ‘SP951’ leaves (pvalue= 0.2388). LMA
was significantly different between control and infected Katadhin
leaves during necrotrophy but not for ‘SP951’.

3.3. Identifying variation and consistency in important spectral regions
across cultivars and disease time

PLS-DA was performed to test the accuracy of classification of in-
fected and non-infected leaves (Figs. 3 and 4, Table 1). Across all dis-
ease time stages, the PLS-DA model used 14 components and achieved

discrimination accuracy of 70 % and kappa of 0.3. Accuracy was higher
when disease progression was taken into account (Table 1). Taking the
first order derivative of spectra to reduce systematic variation between
cultivars did not increase the accuracy or kappa of the resulting model
(data not shown). During early infection, infected and non-infected
samples could be discriminated with 65 % accuracy (kappa=0.214).
Discrimination accuracy was 73 % during biotrophic growth
(kappa= 0.35), necrotrophic growth (kappa=0.39) and sporulation
(kappa= 0.42) respectively. Binning together the pre-symptomatic
disease time stages, discrimination accuracy was 67 % (kappa= 0.19)
and 71 % (kappa=0.39) during post-symptomatic infection (Table 1).

Random forest classification was implemented on first derivative
spectral data, both with and without cultivar included as a predictor
variable, to compare to PLS-DA and determine whether a machine
learning method could yield higher accuracy and greater model ro-
bustness. Random forest discrimination had higher accuracy than PLS-
DA in detecting infected leaves across cultivars, but both identified si-
milar spectral features (Figs. 3,4). Accuracy and kappa metrics between
random forest classification and PLS-DA were comparable (Tables 1 and
2). Random forest without cultivar as a predictor could classify between
control, pre-symptomatically, and post-symptomatically infected plants
with ∼70 % accuracy (kappa=0.3). When cultivar was included, ac-
curacy did not increase significantly (71 %) but kappa increased to
0.35. With and without cultivar included, control and pre-symptomatic
infected plants could be distinguished with 83 % accuracy
(kappa= 0.42) and 85 % accuracy (kappa=0.45) respectively. Con-
trol and post-symptomatic infected plants could be distinguished with
83 % accuracy (kappa= 0.37) when cultivar was included and 82 %
accuracy (kappa=0.42) without cultivar as a predictor variable. Pre-

Fig. 4. PLS-DA absolute value of standardized coefficients by wavelength overlaid with top 20 VIPs from RF (A, C, E, G) with density plots of wavelengths comprising
the top 0.1 % of most correlated NDSI (B, D, F, H): A–B) Early Infection C–D) Biotrophy E–F) Necrotrophy G–H) Sporulation.
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and post-symptomatic infected plants could be distinguished from each
other with 71 % accuracy (kappa= 0.41) and 69 % accuracy
(kappa= 0.37) with and without cultivar included as a predictor
variable respectively. Overall, high variability between cultivars may
reduce model accuracy, but we found that including cultivar as a po-
tential predictor variable did not dramatically change model accuracies
and kappas. Three-class discrimination between control, pre-sympto-
matic, and post-symptomatic samples was performed for each cultivar
(Table 3). Model performance varied considerably between cultivars.
‘SP951’ and ‘Snowden’ discrimination accuracy was poor
(kappa= 0.18 and 0.14 respectively) whereas ‘Katahdin’ and ‘Russet
Burbank’ discrimination accuracy performed moderately well in com-
parison (kappa=0.4 and 0.37 respectively).

Examination of the wavelengths used to make the top 0.1 % of NDSI
(approximately 4000 wavelengths), as ranked by Pearson’s correlation
for each cultivar as infection progressed, confirmed our previous
finding that important regions of wavelengths change as disease time
progresses [51 in review]. However, we found that the specific spectral
regions that are most important during each stage is cultivar dependent
(Fig. 4B, D, F, H). During early infection in ‘Katahdin’ and ‘SP951’
plants, regions centered around the water absorption feature at
1400 nm are the most divergent from non-inoculated control plants. In
‘Katahdin’ plants, the most highly correlated regions are sharply cen-
tered around these water bands, but inoculated ‘SP951’ foliage showed
a reaction to infection at this stage across a broader range of wave-
lengths spanning the 1400 nm water band through the 1700 nm
(Fig. 4B). In contrast, visible wavelengths were most strongly affected
by infection in ‘Snowden’ plants and the red edge (700−750 nm) and
1000 nm NIR plateau in ‘Russet Burbank’ plants (Fig. 2). During bio-
trophic growth (Fig. 4D), ‘Katahdin’ plants showed a strong spectral
response in the visible range, ‘SP951’ plants exhibit the greatest change
in the 1400 and 1900 nm water features, ‘Russet Burbank’ plants show
the strongest response in the NIR plateau, and ‘Snowden’ plants were
most strongly affected in the visible and SWIR water band range
(Fig. 4F, 5H).

During necrotrophic growth, the most highly correlated wave-
lengths for ‘Katahdin’ were centered around the visible and red edge, as
well as a wide range of wavelengths spanning the SWIR between
1400−2000 nm. In contrast, the most highly correlated wavelengths
for ‘SP951’ were solely in the visible range (specifically centered on a
small range of wavelengths in the 600 nm region). The most highly
correlated wavelengths for ‘Russet Burbank’ remained in the red edge
and NIR plateau (as with biotrophy); ‘Snowden’ continued to show a
strong response in the visible range with the influence in the SWIR
shifting to be more centered around the 1890−2000 nm during ne-
crotrophy and continuing on through sporulation. During sporulation,
‘Russet Burbank’ showed the strongest change in the visible range,
whereas ‘Katahdin’ showed the strongest response around 1890 nm.
‘SP951’ plants showed the strongest change in the NIR bands centered
around 1000 nm.

3.4. Three theoretically different analytical methods identify similar
important spectral features

All three statistical methods– PLS-DA, RF, and NDSI correlation–
identified similar spectral features important for late blight detection
across and within cultivars (Figs. 3,4). Strong features associated with
the four cultivars were identified by examining the most correlated
NDSIs and evaluating random forest VIP and PLS-DA standardized
coefficients. Across all disease time points, wavelengths in the visible
range were most differentiating for ‘Snowden’, which can be potentially
correlated with the RF VIP and PLS-DA standard coefficient peak
around 580 nm (Fig. 4). Random forest VIP and PLS-DA standardized
coefficients cannot be directly compared because of different under-
lying wavelength bin sizes. During early infection, the water absorption
feature around 1400 nm was particularly differentiating for ‘Katahdin’Ta
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plants. This is reflected in a PLS-DA standard coefficient peak as well as
two RF VIP (Fig. 4A, B). During biotrophy, two RF VIP, 1165 nm and
1265 nm from the control vs. pre-symptomatic differentiation model
were aligned with a bimodal peak in the ‘Russet Burbank’ density plot
(green), and can thus be assumed to be highly important for differ-
entiating ‘Russet Burbank’ healthy and control leaves (Fig. 4C, D).

Despite some variation, both PLS-DA and Random Forest identified
similar spectral features for discrimination during all disease time
points (Fig. 3A) and within the various disease time stages (Fig. 4). It is
important to note that we binned wavelengths to 10 nm intervals for
Random Forest classification (necessary because RF is sensitive to
number of independent variables), so each identified VIP can account
for the influence of nearby bands when comparing to PLS-DA. When
compared to the distribution of most correlated NDSI for each cultivar
(Figs. 3B, 4 B, 4 D, 4 F, 4 H), the VIP and most correlated standard
coefficients can be related to the influence of the underlying cultivars.
Where we cannot align a specific cultivar’s influence with any one RF or
PLS-DA feature, we can assume that the region is important for dis-
crimination across all cultivars. This is the case with VIP in the SWIR
2100 nm range during symptomatic disease time stages (Fig. 4E, G).
Together, the three analytical methods elucidate the most important
regions for discrimination, and thus, each provides information needed
for the long-term goal of accurate, pre-symptomatic field detection, and
a deeper understanding of the underlying processes driving our ability
to discriminate between infected and healthy plants across cultivars
using reflectance spectroscopy.

4. Discussion

The spectral response, and thus the underpinning biochemical and
physiological traits, of four potato cultivars to inoculation with
Phytophthora infestans clonal lineage US-23 was highly variable. There
was a significant cultivar by treatment interaction across all timepoints
and within each disease time stage except for early infection (Table 1).
Thus, we find that cultivar, or plant genotype, has a significant impact
on spectral reflectance of plants undergoing P. infestans infection. Plant
genotype can influence trait expression, and subsequent detection and
discrimination [32] especially during early stage late blight progression
[52]. Here, we find there to be strong variation in plant response to
pathogen infection at early stages of disease (1–6 days post inocula-
tion). At later stages of disease development and progression, there is
greater similarity across cultivars. These results serve to emphasize the
importance of including multiple cultivars in early disease detection
studies and model development due to the high potential for variation
in trait response as a consequence of breeding [32]. The inclusion of
multiple cultivars is critical in future remote sensing studies, as the
most important spectral differentiators can be quite different despite
seemingly identical visible disease progression.

We found that late blight changed leaf physiology consistently and
towards a more uniform state across all cultivars, including ‘Katadhin’
and ‘SP951’. ‘These cultivars share a genetic background, varying only
in a single copy of the Rb gene, which confers late blight resistance from

the wild type potato Solanum bulbocastanum [3]. In our study, while
‘SP951’ plants exhibited some resistance to late blight, perhaps more
aptly termed tolerance, they were not immune. Late blight developed
under high inoculum levels and conducive environmental conditions.
We did not see a significant difference in AUDPC between ‘Katahdin’
and ‘SP951’ plants (Fig. S1B) despite a difference in mean AUDPC. The
spectral responses of late blight-infected ‘SP951’ and ‘Katahdin’ plants
clustered together in our PCoA analysis (Fig. 1), but showed differences
in spectral responses to disease at all stages as illustrated by the nor-
malized differential spectral index fit for each cultivar (Fig. 2) and non-
destructive assessment of physiological and biochemical status (Fig. S4,
Table S4).

Overall, the greatest differences between ‘Katahdin’ and ‘SP951’
plants were seen during the earliest stages of infection, during the first
three disease time stages (early infection, biotrophy, and necrotrophy).
This suggests that the underlying infection processes driving spectral
differences during early disease establishment were the most divergent
between ‘Katahdin’ and ‘SP951’ at these stages. The RB gene responds
to the IPI-O family of effectors and may be influencing plant response
during early infection, despite the fact that it was overpowered and the
leaves ultimately succumbed to disease in time [53]. Despite the fact
that ‘SP951’ succumbed to infection pressure, our work corroborates
that the resistance conferred by the RB gene impacts the mechanisms by
which the plants physiologically respond to infection during the earliest
infection stages, as shown through leaf spectral characteristics.

Despite the strong influence of cultivar on spectral profile, we found
that the inclusion of cultivar as a potential predictor variable only
slightly increased random forest model discrimination accuracy despite
the spectral differences seen between cultivars (Table 3; Fig. 2). How-
ever, there was enough similarity across infected leaves of the different
cultivars to facilitate accurate detection of infected plants with two
different multivariate discrimination methods (Table 1,2). This in-
dicates that despite large spectral variation at times, there is still en-
ough commonality to the infection process across cultivars to allow for
accurate, broad detection. This work supports the finding in Thomas
et al., which found that annotating a single cultivar’s disease response
was sufficient to train a support vector machine to detect powdery
mildew on six barley cultivars with a high throughput hyperspectral
imaging system at later stages of infection [54]. Future work should
seek to evaluate whether this finding 1) scales to canopy level de-
ployment (e.g. from drones, planes, or spacecraft) and 2) whether there
are conditions, either environmental or pathogen, that may detract
from this commonality enough to lead to false negatives.

All cultivars in our study showed individual spectral responses to
infection in the visible range, near infrared, and shortwave infrared
across all stages of infection, though there was variation in the regions
that showed the greatest response to infection across cultivars.
Response patterns appeared to be most consistent in the SWIR, whereas
VIS and NIR patterns appeared more variable across cultivars (Fig. 2,
Fig. 4). While SWIR wavelengths did not show the strongest relation-
ships, they were the most consistent, and therefore appear to be im-
portant to overall detectability and repeatability. This consistency may

Table 2
Cultivar three class (control, pre-symptomatic, and post-symptomatic) random forest discrimination accuracy. Internal cross validation yielding accuracy and kappa
values was performed 10 times with data split 80/20 calibration/validation.

Random Forest Three Class Discrimination: First Order Derivative Spectra

Cultivars CV Accuracy CV Kappa mtry Top 20 VIP (nm)

Control vs Pre-Symptomatic vs Post-Symptomatic

Katadin 71.13% 0.40 36 485, 1165, 1005, 1205, 1265, 1115, 2205, 685, 475, 1935, 445, 545, 435, 2195, 425, 635, 665, 495, 1285, 1215
SP951 68.82% 0.18 26 1265, 415, 555, 545, 865, 2165, 1035, 2175, 425, 895, 2205, 1025, 875, 1165, 1185, 1435, 1115, 2185, 1045, 905
Russet Burbank 65.98% 0.37 16 2135, 2145, 2075, 475, 745, 2085, 625, 885, 645, 2195, 665, 2175, 2205, 2095, 915, 2185, 485, 635, 715, 725
Snowden 61.68% 0.14 11 445, 1265, 875, 2385, 1115, 1235, 1025, 1095, 1945, 2165, 1085, 1625, 1155, 1245, 1205, 1975, 1715, 2375, 1145, 1955
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imply models incorporating SWIR wavelengths could potentially be
more robust to unknown or variable environmental and/or genetic
differences (e.g., cases where models for genotypes do not exist). SWIR
wavelengths have been found to be important for pre-symptomatic P.
infestans detection and discrimination from Alternaria solani [51] and
discrimination between P. infestans clonal lineages [55].

We found a significant three-way interaction of disease time, cul-
tivar, and treatment on NDWI, and a weakly significant effect on sugar
concentration and LMA. “Watersoaking” is a phenomenon associated
with late blight infection where cellular structure collapses due to pa-
thogen infection [25,56]. The differences seen in NDWI indicated that
the plants recognized the pathogen invasion and were potentially in-
vesting energy in maintaining water concentration to fight disease.
Alternatively, the pathogen could have triggered the plant to take up
more water at the expense of other activity. We found in our previous
work that late blight infection changes the total phenolics concentra-
tion and sugar concentration of leaves [51,55]. Variability in cultivar
sugar concentration and the manner in which infection impacts sugar
concentration of leaves may influence accuracy of detection.

Spectral signatures associated with infection in SWIR narrow bands
were most similar between cultivars. NDSI plots fit for all cultivars
show that there is consistency to potato plant response to late blight
infection, particularly in the SWIR and around 1000 nm (Fig. 2). Shared
impact of infection on SWIR narrow bands could indicate a conserved
biochemical reaction or metabolic shift during infection. Deriving and
quantifying the underlying driver of this conserved feature could im-
prove detection accuracy across a broader group of plant genotypes and
environmental conditions. We saw similarity in the SWIR for both late
blight-infected leaves as well as early blight (causal agent Alternaria
solani)-infected leaves [51]. Couture et al. reported on a similar SWIR
response to Potato Virus Y infection across multiple potato cultivars
[32], suggesting an even greater similarity to the response of potato to
infecting pathogens. The characterization of SWIR responses to infec-
tion along with the underlying biochemical, physiological, and mor-
phological changes are important areas ripe for exploration. Exploring
quantification of compounds associated with conserved defense path-
ways may allow us to both better quantify broad plant defense response
and develop a warning system for general defense activation.

Non-destructive characterization of biochemical traits enables the
non-invasive assessment of host-pathogen interactions and their pro-
gress or status. We demonstrate that responses in the SWIR spectral
region of potato foliage are conserved among cultivars in response to P.
infestans infection. SWIR wavelengths in these conserved regions are
known to be associated with changing biochemical concentration [7].
Despite both a cultivar and treatment effect, our work demonstrated
that there was not a two-way cultivar by treatment or three-way disease
time by cultivar by treatment effect for concentration of phenolics. The
lack of a significant cultivar by treatment interaction term provided
evidence that there may be consistency to the impact of infection on
total phenolics concentration across cultivars. This finding suggests that
phenolics are an attractive group to query for more specific and robust
late blight detection across cultivars. Phenolic compounds have long
been understood to play a role in plant defense, with many defense-
related genes associated with late blight resistance encoding phenolics
pathway constituents [57,58]. For example the PAL-1 gene encodes a
lyase that controls the production of phenolics compounds is differen-
tially expressed during infection by different cultivars [58]. Secondary
metabolites with phenolic structures are differentially produced during
early stages of infection [59]. Remote quantification of secondary me-
tabolites up or downregulated during early infection may be a way to
increase detection accuracy regardless of plant genotype.

5. Conclusion

We found that the spectral responses of four potato cultivars to in-
fection by Phytophthora infestans clonal lineage US-23 were highlyTa
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variable, yet with important shared features that facilitated dis-
crimination. Our work lays the foundation to better understand host-
pathogen interactions across a variety of genotypic backgrounds, and
establishes that host genotype has a significant impact on spectral re-
flectance, and hence on the underlying biochemical and physiological
traits that facilitate detection, in plants undergoing pathogen infection.
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