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A B S T R A C T

Stomatal conductance is a critical regulating factor in plant water relations and responses to abiotic stress.
Abscisic acid (ABA) is one of the plant hormones that regulates stomatal conductance and leaf transpiration. The
presence of endogenous or exogenous ABA induces stomatal closure, which reduces leaf transpiration rates and
increases tolerance to abiotic stress. In this study, visible near-infrared (Vis-NIR) spectroscopy, as well as
proximal multispectral and thermal imaging were used to evaluate changes in stomatal conductance through
exogenous ABA applications to apple trees. ABA was applied twice at 500mg kg−1 in 2016, with five control and
five ABA-treated trees in a three-year-old apple orchard. Proximal Vis-NIR spectral reflectance (350–2500 nm)
data, and multispectral and thermal infrared images were acquired from control and treated trees after 1–3 days
of exogenous ABA application to the trees. Ground reference stomatal conductance was also measured to
compare the data with proximal sensing data. Partial least square regression (PLSR), linear support vector
machines (SVM), and quadratic SVM algorithms were applied to classify the control and ABA-treated leaves,
before and after feature selection using rank features technique and stepwise regression analysis. The average
classification accuracy ranged between 80 and 85% at 3 days after treatment with the entire Vis-NIR spectra,
while the accuracies ranged between 74 and 80% with five selected spectral bands. The ABA treatment effects
could not be observed with crop water stress index extracted from thermal images, although the leaf temperature
in ABA-treated trees were higher than the untreated control trees. Green normalized difference vegetation index
extracted from multispectral images also did not show any differences between control and ABA-treated trees.
Overall, results suggest that the hyperspectral Vis-NIR sensing was able to acquire spectral changes pertinent to
the dynamic processes such as stomatal conductance, independent from non-responsive traditional vegetation
indices that lacked responsive spectral bands.

1. Introduction

The measurement of plant water status is important to improve
upon the ability to optimize irrigation decisions. Improving water-use
efficiency can have ecological as well as horticultural benefits. Changes
in plant water status can affect tree growth, physiology, productivity
and crop quality (Espinoza et al., 2017). The dynamic management of
plant water in horticultural crops can be a valuable tool to improve
growth, productivity, and quality (Shackel et al., 1997). The success of
above strategy depends on the ability to rapidly and accurately measure
changes in plant water status to make informed irrigation decisions. In
many crops, stomatal conductance has been shown to be closely linked
to plant water status. Traditional measures of stomatal conductance
have been focused on measuring water loss from a defined leaf area

surface. However, emerging strategies are focused on rapid, proximal
sensing to detect changes in plant water status (Espinoza et al., 2017).
Proximal sensing of leaf stomatal conductance has implications that
extend beyond irrigation management and is important for maintaining
optimum plant health.

Abscisic acid (ABA) is a growth regulator that is produced in both
the roots and shoots and is translocated to other parts of the plant
through xylem during the transpiration process (Coggins and Lovatt,
2014). ABA manages plant responses to water stress by coordinating
stomatal conductance with the available water supply (Aasamaa and
Sõber, 2011). ABA regulates stomatal closure (Correia et al., 1995), leaf
transpiration, and plant water potential (Freitas et al., 2011). Under
water stress conditions, ABA induces stomatal closure to conserve water
(García-Mata and Lamattina, 2003) and to reduce the risk of damage to
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the plant. ABA accumulates in shoots that reduces leaf transpiration
without significantly affecting the fruit transpiration (Freitas et al.,
2011).

Plant water use efficiency is influenced by water uptake and
transport wherein leaf transpiration plays a major role. Exogenous or
synthetic ABA can also be used to induce drought stress responses in the
absence of stress conditions (Shinozaki and Yamaguchi-Shinozaki,
2007). McArtney et al. (2014) reported that exogenous synthetic ABA
applications to apple canopy induces stomatal closure and decreases
stomatal conductance. There is growing interest in being able to
monitor the effect of exogenous ABA applications on stomatal con-
ductance and plant water status. ABA can limit transplant shock
(Berkowitz and Rabin, 1988), induce dormancy (Hilhorst and Karssen,
1992), increase fruit quality (Kobashi et al., 1999), and has been re-
ported to induce greater fruit calcium accumulations in tomato (Freitas
et al., 2011).

Fruit calcium absorption is important in preventing some physio-
logical disorders in fleshy horticultural crops (Ho and White, 2005).
Calcium is absorbed from the soil through root water uptake. Xylem
water movement is required for calcium uptake and delivery to sink
organs such as leaves and fruit. The difference in transpiration rates
between leaves and fruit has been hypothesized as a mechanism that
leads to calcium imbalances between these two competing organs.
When ABA production is induced in the plant by water stress or when
exogenous ABA is applied, stomata closure leads to declined tran-
spiration rate. This may influence the transpirational balance between
fruit and leaves and produce an increase in calcium uptake in devel-
oping fruit. Freitas et al. (2011) reported that calcium uptake and dis-
tribution into the developing tomato fruit was greater when exogenous
ABA was applied because of reductions in leaf transpiration. Exogenous
ABA increased calcium uptake into the fruit and reduced blossom end
rot in tomato (Freitas et al., 2011). Similar experiments in apricot
(Montanaro et al., 2010) and kiwi (Montanaro et al., 2012) have de-
monstrated a close association between transpiration and calcium ac-
cumulation. In apple, ABA has been reported to affect calcium-related
genes (Falchi et al., 2017) and to reduce transpiration that can have a
strong effect on calcium levels in the fruit. Although the effect of ABA
on plant physiology has been well documented, practical limits on the
real-time monitoring of plant responses to ABA are difficult and time
consuming to measure. As such, there needs to be better monitoring
method developed for the use of exogenous ABA treatments.

The effect of ABA on leaf and plant physiology can be estimated
through the direct measure of evapotranspiration, photosynthetic rate,
and stomatal conductance (Astacio and Iersel, 2011). Advanced high-
throughput plant sensing tools to accurately monitor the effect of ABA
on plants/trees are essential in optimizing exogenous ABA applications.
Proximal and remote sensing techniques such as visible near-infrared
(Vis-NIR) spectroscopy and imaging have been used to evaluate biotic
stress status (Calderón et al., 2013; Gomez-Candon et al., 2014; Naidu
et al., 2009; Sankaran et al., 2011). High-throughput vegetation tem-
perature measurement can also serve as an indicator of transpiration
rate and stomatal conductance changes (Berni et al., 2009; Calderón
et al., 2014; Zarco-Tejada et al., 2012). Stomata closure results in lower

transpiration rate that increases the leaf temperature (Osakabe et al.,
2014). Thus, thermal imaging may be useful in estimating the plant
water use efficiency, and consequently abiotic and biotic stress in plants
(Araus and Cairns, 2014; Chaerle et al., 2005). For example, the spatial
variability of water stress in a vineyard has been assessed with ex-
tracted crop water stress index (CWSI) using temperature data (Bellvert
et al., 2014). The CWSI was found to be highly correlated with leaf
water potential (coefficient of determination, R2=0.83).

Currently, stomatal conductance is monitored using handheld or
stationary instrumentation that monitors shifts in relative humidity
gradients, which can be used to estimate plant transpiration, a measure
of stomatal conductance. In this study, we hypothesize that decreases in
stomatal conductance induced by exogenous ABA applications to apple
trees can be monitored using proximal visible-near infrared and thermal
sensing systems. The objectives were to evaluate the response of the
apple trees to exogenous ABA application using proximal visible near-
infrared spectroscopy, and agricultural utility vehicle (AUV)-based
thermal infrared and multispectral imaging with controlled experi-
mentation and provide comparisons of such data with direct physiolo-
gical measurements.

2. Materials and methods

2.1. Field site, experimental design, and ABA treatments

The experiment was conducted at Washington State University's
Sunrise Research Orchard located in Rock Island, WA (47°18′35.27″N,
120° 4′0.16″W). The ‘Honeycrisp’ apple orchard on M9-T337 rootstock
was planted in 2015 and did not contain fruit at the time of measure-
ments. Three replicates of 10 trees were selected for uniformity and
health from the four rows of 60 trees in a split-plot experimental design.
Each replicate was split into two groups of five trees; one to act as an
untreated control and the other for ABA to be applied (Fig. 1). ABA was
applied at a rate of 500mg kg−1 to the point of drip formation on the
leaves using a backpack sprayer on two dates; June 20 and August 16,
2016. ABA has been shown to be biologically active for approximately
21 days in young apple trees (McArtney et al., 2014) and the time
between treatments was chosen to exceed that period.

2.2. Ground reference measurements

Stomatal conductance was measured immediately prior to sensor-
based measurements in the same location. Measurements were made
using a Decagon SC-15 handheld porometer (Meter Group Inc., WA,
USA) between 09:00 and 11:00 a.m. on sunny days when the photo-
synthetically active radiation was between 1200 and 1500 μmolm−2

s−1 on two sun-exposed leaves that were approximately 1.5m from the
ground. The porometer used in this study considers the air relative
humidity and temperature in the calibration process. For leaf mea-
surement, the sensor obtains leaf humidity and estimates the stomatal
conductance according to the difference between relative humidity in
two conductance elements inside the sensor. Air temperature during
measurements was between 18 and 20 °C (AgWeatherNet at

Fig. 1. Plot design describing the treatments in the Sunrise orchard.
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Washington State University). In this study, the stomatal conductance
measurements were compared to the same day visible-near infrared
reflectance data of the treated trees.

2.3. Data collection

Vis-NIR reflectance data were collected using a spectroradiometer
(SVC HR-1024i, Spectra Vista Corporation, NY, USA) with a working
wavelength of 350–2500 nm. The resolution at 700, 1500 and 2100 nm,
is ≤3.5, ≤9.5 and≤6.5 nm, respectively. Three mature leaves exposed
to sunlight were selected from different shoots in each tree, and data
were captured using a leaf clip probe (LC-RP PRO, Spectra Vista
Corporation, NY, USA). In total, 45 spectra from ABA-treated and un-
treated (control) tree leaves (total of 45 leaves) were collected. In ad-
dition to the proximal Vis-NIR spectral data, images from a modified
multispectral digital imager (Canon ELPH110 HS, NJ, USA) and a
thermal infrared imager (Tau 2 640, FLIR® Systems, OR, USA) were
acquired. The imagers were mounted on an agricultural utility vehicle
(John Deere Gator™ XUV590i, John Deere, IL, USA) connected to a
retractable mast (FM50-25, Floatagraph Technologies, CA, USA). The
distance between the imagers and trees was approximately 7m. During
data collection, the camera was always parallel to the ground surface,
and images were acquired from the top of the tree canopies.

The three bands captured in the multispectral images were green
(G), blue (B), and near infrared (NIR, 680–800 nm) with a resolution of
4608×3456. The thermal imager captured 8-bit images with 327,680
pixels and resolution of 640×512. The imaging sensors were con-
nected to a triggering device and were manually triggered for si-
multaneous image acquisition. Images were stored in an on-board se-
cure digital (SD) card and post-processed. The ground sampling
distances for the multispectral imaging sensor was 2.5 mm and that of
thermal imaging sensor was 8mm. A white reflectance reference panel
(Spectralon Reflectance Standard, Labsphere, North Sutton, NH) was
used for radiometrically correcting the Vis-NIR reflectance spectra. The

proximal data and images were collected 2 days after treatment (DAT)
during the first ABA application (ABA-Application-1), and 1 day before
treatment (DBT) and 1 and 3 DAT during the second ABA application
(ABA-Application-2).

2.4. Data analysis

2.4.1. Vis-NIR spectral reflectance data
The data analysis was performed using Matlab® software, Statistics

and Machine Learning toolboxes (Mathworks, Natick, MA). The Vis-NIR
reflectance spectra were normalized and binned by averaging every
10 nm spectral interval (Sankaran et al., 2011) prior to further pro-
cessing and analysis. Partial least square regression (PLSR), linear
support vector machine (LSVM), and quadratic support vector machine
(QSVM) algorithms were utilized for classification. PLSR is a multi-
variate analysis that is able to predict a set of dependent variables from
a very large set of independent variables (i.e., predictors). This method
is useful to predict the canopy status using Vis-NIR spectral signature as
the predictor. The method includes partial least square analysis and
multiple linear regression with combined features. PLSR extracts latent
variables for prediction purposes (Abdi, 2010). The explained variance
of 95% was used for selecting latent variables during PLSR analysis. For
linear classification methods, SVM algorithms look for optimal separ-
ating hyperplanes between the classes. The classifier maximizes the
margin between the support vector and the boundaries to optimize the
algorithm. When data are not linearly separable, they are mapped to a
higher dimensional space. In QSVM algorithms, data points are trans-
ported to a quadratic space and are separated by a plane. The classifi-
cation algorithms were applied to assess the possibility of dis-
criminating treated from untreated leaves. Each algorithm was applied
three times on each dataset after randomization. The dataset was se-
parated into training (for model development) and testing (for in-
dependent validation of the developed model) datasets with a ratio of
3:1 (Jarolmasjed et al., 2017). The average overall classification

Fig. 2. Flowchart explaining processing steps of visible near-infrared (Vis-NIR) reflectance spectra.
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accuracies, false positives (control classified as ABA-treated), and false
negatives (ABA-treated classified as untreated) for each dataset are
reported.

Highly dimensional data are computationally expensive and such
data also introduce redundancy associated with correlated features in
the spectrum (Pal and Foody, 2010). To reduce the data dimensionality,
two feature selection methods, stepwise regression analysis (SRA) and
rank features technique (RFT) were used. The bands that were selected
by both methods were identified and validated using classification al-
gorithms. Two additional bands selected by SRA were included and
classification algorithms were assessed once more. Fig. 2 outlines the
data processing steps used during feature selection and classification
processes. The stomatal conductance prediction was performed using
Vis-NIR reflectance spectra and the selected spectral features using
PLSR.

In addition to multivariate analysis, several vegetation indices based
on canopy greenness, photosynthesis, light use efficiency, nitrogen
concentration, and canopy water content were estimated. Specific ve-
getative indices including normalized difference vegetation index
(NDVI) (Rouse, 1974), enhanced vegetation index (EVI) (Huete et al.,
2002), green normalized difference vegetation index (GNDVI) (Gitelson
and Merzlyak, 1998), simple ratio (SR) (Birth and McVey, 1968),
modified red edge normalized vegetation index (MRENDI) (Datt, 1999;
Sims and Gamon, 2002), Vogelmann red edge index 1 (VREI1)
(Vogelmann et al., 1993), Vogelmann red edge index 2 (VREI2)
(Vogelmann et al., 1993), photochemical reflectance index (PRI)
(Gamon et al., 1997; Peñuelas et al., 1995), structural independent
pigment index (SIPI) (Penuelas et al., 1995), normalized difference
nitrogen index (NDNI) (Fourty et al., 1996; Serrano et al., 2002),
moisture stress index (MSI) (Ceccato et al., 2001; Hunt and Rock,
1989), normalized difference infrared index (NDII) (Hardisky et al.,
1983), normalized difference water index (NDWI) (Gao, 1995; Jackson
et al., 2004), normalized multi-band drought index (NMDI) (Wang
et al., 2008; Wang and Qu, 2007), and water band index (WBI)
(Peñuelas et al., 1993) were estimated. The purpose of extracting these
features was to determine if any of the standard vegetation features can
be used for assessing ABA effects on leaves and the overall tree. Sta-
tistical analysis was performed using R x64 (version 3.1.1, R Founda-
tion for Statistical Computing, Vienna, Austria). Analysis of variance
and ‘student t-test’ were used to compare the mean differences of ve-
getation indices.

2.4.2. Multispectral and thermal images
A representative multispectral image is shown in Fig. 3. In the

multispectral camera, images were separated into individual band
images, and the digital numbers were radiometrically corrected based
on the reflectance from the reference panel. The goal of radiometric
correction is to compensate for the changing incident light conditions
during the imaging. Correction assists in obtaining absolute reflectance

measurements from the images (Kelcey and Lucieer, 2012). Reference
panel reflects 99% of the incident light (expected digital
number= 255) in each of the spectral bands. If different, the digital
numbers are corrected based on the correction factor calculated from
the image digital number. Each pixel of the image is multiplied by the
correction factor (ratio of 255/digital number of reference panel in the
image). This correction normalizes the images for the changing sunlight
conditions. Following this correction, GNDVI images were generated.
The soil background and leaf shadows were eliminated with a combi-
nation of k-means clustering (Al Bashish et al., 2011) and thresholding
methods (Bulanon et al., 2001). Individual trees then were segmented
from the processed image, and the average GNDVI from each region of
interest (tree) was extracted. The data were further analyzed statisti-
cally using R at 5% level of significance.

Thermal images were converted to comma separated value (CSV)
files using ThermoViewer (2.0.2, Teax technology, Wilnsdorf,
Germany). In thermal images, each pixel value represents the tem-
perature in Celsius. Therefore, during the conversion to CSV format, the
pixel temperature was preserved and recalled during image processing.
In image processing algorithm, the soil background was removed by
thresholding. The algorithm was able to automatically process the data
for defined regions of interest. In preprocessed and corrected images,
each tree was selected as a region of interest. A wide range of studies
has used thermal imaging to assess the thermal properties of the ca-
nopies (Cohen et al., 2005; Fuentes et al., 2012; Gonzalez-Dugo et al.,
2012; Grant et al., 2006; Jones, 2002). Thermal images are normalized
using a crop water stress index (CWSI) to compensate the variability in
the environmental parameters. This index that is extracted from
thermal images is proportional to the stress level of crops (Berni et al.,
2009). Thermal imaging is providing opportunities to sense the tran-
spiration and stomatal conductance remotely with the help of CWSI.
However, it is applicable only for a short span of time around solar
noon and under the clear sky (DeJonge et al., 2015). It also requires
some other measurements such as air temperature, lower and upper
baseline that can be limited. In this study, images were normalized by
the method described in Bellvert et al. (2014). In this method, mean,
the minimum, and maximum temperature of each tree were extracted
and recorded. Then, crop water stress index (CWSI) was extracted from
the thermal images using the following equation.

=

− − −

− − −

CWSI T T T T
T T T T
( ) ( )

( ) ( )
c a cmax a

cmin a cmax a

Where Tc represents the average canopy temperature in each region of
interest of trees, and Ta is air temperature from a weather station in the
orchard. Tcmax and Tcmin represent the maximum and minimum pixel
temperature within each region of interest, respectively. The multi-
spectral and thermal image processing protocol is summarized in Fig. 4.

Fig. 3. The multispectral image (a) with near infrared (NIR) (b), green (c), and blue (d) bands. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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3. Results and discussion

3.1. Vis-NIR spectral reflectance data

Exogenous ABA applications induced stomatal closure in leaves and
reduced leaf transpiration. Before Vis-NIR reflectance spectra analysis,
the changes of the leaf stomatal conductance after the second treatment
were analyzed. The mean stomatal conductance was greater in leaves
from the untreated control compared to leaves from trees treated with
exogenous ABA (p < 0.05). The p-value for data at 1 and 3 DAT after
the ABA-Application-2 was< 0.001.

The Vis-NIR reflectance spectra from leaves were analyzed using
PLSR, LSVM, and QSVM. The control and ABA-treated leaves were
considered as two classes and the average overall classification ac-
curacies are presented in Table 1. The classification accuracies in
identifying the ABA-treated and control trees using three classification
models were higher at 3 DAT after the ABA-Application-2, with average
overall classification accuracies ranging from 80 to 85%. Overall, PLSR
showed a better performance in the classification with the least false
positive and false negative accuracies compared to SVM algorithms.

This classification approach supports the differences in the Vis-NIR
spectral reflectance data between the control and ABA treatments.
However, this difference was not observed at 1 DAT, especially after the
ABA-Application-1. During the ABA-Application-2, 1 DAT also showed
better classification accuracies that were only slightly lower than 3 DAT
(76–82%).

SRA and RFT were applied to the dataset that showed the highest
classification accuracy (3 DAT, ABA-Application-2, Table 1) to reduce
217 spectral features acquired from the processed raw data (after
normalization and binning) to about 5 spectral features. The spectral
features selected from these two models are summarized in Table 2.
One set of three spectral features (960, 1140, 1150 nm; commonly se-
lected spectral bands from two methods), and another set of five
spectral features (580, 730, 960, 1140, 1150 nm; with the inclusion of
green and red-edge spectral bands from SRA technique) were selected.
In other studies, the wavelengths close to the included green and red-
edge are suggested to be representative of plant responses to physio-
logical stresses. Schlemmer et al. (2005) used first derivatives at
525–570 nm as well as red edge to measure physiological parameters in
corn. Similarly Carter (1998) concluded that the reflectance near 550
and 700 nm is affected by physiological stress and chlorophyll content.
The classification algorithms were then applied to the spectral data at 1
and 3 DAT after ABA-Application-2. Amongst all the datasets, the
average classification accuracy at 3 DAT was the highest, but margin-
ally lower than the entire Vis-NIR spectra (350–2500 nm, Table 3). The
overall average classification accuracies of PLSR and LSVM was about
80%. The classification was more accurate with five spectral features
(5-Bands) compared to three spectral features (3-Bands). There was no
significant difference either between days after treatment or among the
methods. However, the occurrence of false negative classifications was
lower at 3 DAT.

During the PLSR-based prediction using Vis-NIR reflectance spectra
(350–2500 nm), a strong regression coefficient between observed and

Fig. 4. Analysis flowchart of multispectral and thermal images acquired from the agri-
cultural utility vehicle. GNDVI= green normalized difference vegetation index,
CWSI= crop water stress index.

Table 1
Average overall classification accuracies, false positive, and false negative rates
(± standard deviation) using different classification algorithms on the visible-near in-
frared reflectance spectra (350–2500 nm). DAT and DBT refer to days after treatment and
day before treatment, respectively.

Model Parameter ABA-
Application-1

ABA-Application-2

2 DAT 1 DBT 1 DAT 3 DAT

PLSR Classification
accuracy (%)

67 ± 7 68 ± 12 82 ± 5 85 ± 5

False positive (%) 8 ± 3 11 ± 5 6 ± 5 3 ± 5
False negative (%) 17 ± 5 18 ± 9 9 ± 9 3 ± 3

LSVM Classification
accuracy (%)

56 ± 9 52 ± 5 76 ± 5 80 ± 5

False positive (%) 9 ± 8 26 ± 10 9 ± 0 17 ± 5
False negative (%) 32 ± 12 23 ± 9 15 ± 5 12 ± 5

QSVM Classification
accuracy (%)

58 ± 19 55 ± 0 77 ± 5 85 ± 10

False positive (%) 11 ± 15 30 ± 10 12 ± 3 9 ± 5
False negative (%) 32 ± 5 15 ± 10 11 ± 7 9 ± 8

Table 2
Spectral features selected using stepwise regression analysis (SRA) and rank features
technique (RFT) extraction techniques.

Feature selection technique Selected spectral features (nm)

SRA 1140, 1250, 960, 340, 530, 580, 740, 730, 550,
1150

RFT 1140, 980, 1390, 1400, 970, 1150, 1880, 1380,
960, 1130
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46



predicted stomatal conductance was seen at both 1 DAT (R2=0.98)
and 3 DAT (R2=0.96) as shown in Fig. 5. Root mean square error
(RMSE) was 22.9 mmol/m2.s for 1 DAT and the values were sig-
nificantly correlated (r=0.99, p < 0.001). Similarly, correlation for 3
DAT was significant (r=0.98, p < 0.001) and RMSE was calculated as
31.1 mmol/m2.s. In the case of using the PLSR model for post-feature
selection, the regression coefficient between observed and predicted
stomatal conductance decreased significantly. For 1 DAT (ABA-Appli-
cation-2), the R2 were 0.44 and 0.04 for 5-bands and 3-bands, respec-
tively. Meanwhile, for 3 DAT, the observed R2 were 0.17 for 5-bands
and 0.11 for 3-bands datasets. These results indicated that 3-bands and
5-bands may not be sufficient for accurate stomatal conductance pre-
diction, although differences between the ABA-treated and control trees
can still be detected.

In addition to Vis-NIR spectra based classification, vegetation in-
dices were computed to assess their potential in identifying differences
in ABA-treated and control trees (Table 4). Amongst the evaluated in-
dices, only PRI that is indicative of photosynthetic light-use efficiency
showed significant differences between control and ABA-treated trees at
1 and 3 DAT after the ABA-Application-2 (Fig. 6). ABA controls sto-
matal conductance that influences photosynthesis rate (Astacio and
Iersel, 2011). Studies indicate that photosynthetic radiation-use effi-
ciency correlates with PRI (Barton and North, 2001; Gamon et al.,
1997). Lower light-use efficiency in response to the closed stomata
reduces the PRI. This could be the reason for observing treatment ef-
fects on PRI in this study, amongst evaluated vegetation indices.

3.2. Multispectral and thermal images

The GNDVI data were extracted from multispectral images with a
region of interest on the tree leaves cluster from the top view. The re-
sults indicated that there were no significant differences in GNDVI and
CWSI data extracted from control and ABA-treated trees, although
differences in stomatal conductance were observed. This shows a major
limitation in vegetation indices signifying they are not reliable in-
dicators of short-term changes in plant health or performance including
rapid changes in stomatal conductance. Visible ranges of the spectrum
are representative of chlorophyll interactions with solar radiation.
Meanwhile wavelength beyond 900 nm are influenced by changes in
water content and dry matter (Haboudane et al., 2002). Ceccato et al.
(2002) reported the limitations of normalized difference vegetation
index in relation to vegetation water content. The information provided
by vegetation greenness is not directly related to the water-related
properties. Eitel et al. (2008) also reported the limitations of chlor-
ophyll related indices because of their sensitivity to leaf area and cov-
erage in response to soil moisture content.

Although a slightly higher average temperature in ABA-treated trees
was observed as expected (lower stomatal conductance will induce
stomatal closure and higher temperature), this difference was not sig-
nificant (Fig. 7). O'Donoughue et al. (2011) reported a higher leaf
temperature in plants treated with exogenous ABA. CWSI has also been
used in water stress detection. The relationship between changes in
plant canopy temperature corresponds to changes in crop water status
(Bellvert et al., 2014). However, there are limitations associated with
this method, specifically interferences of soil background temperatures
that are also included in the canopy temperature measurement (Barnes
et al., 2000). These limitations can increase variability and reduce the
potential of vegetation indices in providing enough data to measure the
physiological changes in leaves.

4. Conclusion

In this study, Vis-NIR spectral reflectance in the ranges of
350–2500 nm was used to detect the effect of exogenous ABA on apple
trees. The result of PLSR on the Vis-NIR data from three days after ABA
treatment showed the highest classification accuracy of 85%, with low
false positive and false negative values compared to LSVM and QSVM
analyses. The coefficient of determination for stomatal conductance
prediction was as high as 0.96. Suitable spectral features were selected
using RFT and SDA. While the classification accuracy was maintained at
80% with LSVM after reduction of features, the prediction accuracy
decreased drastically. In addition to Vis-NIR data, multispectral and
thermal images were captured from the trees. The CWSI data extracted
from the thermal images, showed an increasing pattern with the re-
duction of stomatal conductance. However, GNDVI was not able to
explain the effect of ABA on the leaves. These experiments provide
important confirmations of a close relationship between direct

Table 3
Average overall classification accuracies, false positive, and negative rates (± standard
deviation) using different classification algorithms on the selected spectral features using
two feature extraction methods. 3-Bands include 960, 1140, and 1150 nm. 5-Bands in-
clude 580, 730, 960, 1140, and 1150 nm. DAT refers to days after treatment.

Algorithm Parameters 3-Bands 5-Bands

1 DAT 3 DAT 1 DAT 3 DAT

PLSR Classification
accuracy (%)

68 ± 17 76 ± 9 73 ± 12 79 ± 9

False positive (%) 18 ± 12 17 ± 9 17 ± 9 15 ± 10
False negative (%) 14 ± 5 8 ± 5 11 ± 3 6 ± 3

LSVM Classification
accuracy (%)

69 ± 13 76 ± 7 65 ± 14 80 ± 5

False positive (%) 20 ± 10 18 ± 8 27 ± 9 8 ± 3
False negative (%) 11 ± 3 6 ± 3 8 ± 5 12 ± 7

QSVM Classification
accuracy (%)

64 ± 12 74 ± 7 70 ± 13 74 ± 12

False positive (%) 26 ± 9 20 ± 7 23 ± 8 12 ± 7
False negative (%) 11 ± 3 6 ± 3 8 ± 5 17 ± 13

Fig. 5. The observed and predicted stomatal conductance at 1 day (a) and 3 days (b) after ABA-Application-2.
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physiological measurements of stomatal conductance and modeled es-
timations from Vis-NIR hyperspectral reflectance data. Proximal sen-
sing of stomatal conductance using Vis-NIR reflectance spectra can be
used to measure the plant response from exogenous ABA applications.
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