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Assessing biodiversity in a concise and scalable man-
ner is increasingly urgent in this era of accelerated global 
change, when over one-fifth of all vascular plant species 

are threatened1, and the associated losses of ecosystem functions 
and services are expected to cost humanity 7% of the world's gross 
domestic product by 20502. Diverse plant assemblages capture 
resources more efficiently, cycle nutrients more quickly and are 
more stable over time than depauperate ones3,4. The mechanisms 
that underpin the ecosystem benefits of biodiversity are a conse-
quence of the functional differences among organisms5,6, which 
promote complementary resource use7–9, facilitation8,10, popula-
tion asynchrony5,6 and resistance to disease11. While key individual 
traits provide competitive advantages and can enhance ecosystem 
function, particularly at low diversity levels, differences in multiple 
traits are often responsible for and perpetuate niche differences, 
which enables coexistence and can enhance ecosystem function, 
particularly at high diversity levels9,12–14. Quantifying the degree of 
functional variation in plant communities is thus critical for bio-
diversity research, and a number of functional diversity metrics 
have been developed15,16. There has been marked progress in recent 
decades in the understanding of the functional attributes of plants 
and their contribution to ecosystem function12,13,17,18. Nevertheless, 
choosing the most relevant traits to incorporate into a functional 
diversity metric that captures the functioning of a plant com-
munity in a particular area and at a certain time is challenging. 
Deciphering which traits to choose and the proper weighting of 
those traits is  complicated by incomplete knowledge of interactions 

among  individuals, the spatial and temporal distribution and vari-
ability of key limiting resources, and the seasonal and developmen-
tal shifts in a plant's resource requirements.

Phylogenetic diversity—a measure of the phylogenetic dissimi-
larity among species within an assemblage—has been proposed as 
a means to capture functional variation that avoids overemphasis 
of specific traits19,20. However, while functional differences are gen-
erally expected to increase with evolutionary divergence time21, 
phylogenetic distance does not necessarily correspond to trait dis-
similarity for any particular trait or the most relevant traits in a 
community22,23. On the one hand, traits can be phylogenetically con-
served; for example, when close relatives have experienced strong 
environmental filtering24, such that they share fundamental physi-
ological strategies or ecological niches. On the other hand, traits can 
be labile; for example, when distant relatives show convergent evolu-
tion25 or when close relatives show trait differentiation23. Depending 
on the traits considered and their level of evolutionary conserva-
tism, the relationship between phylogenetic diversity and ecosystem 
function can thus be expected to vary along a continuum23.

Ultimately, the positive effects of biodiversity on ecosystem func-
tion are a result of individual variation. Individuals interact with 
their abiotic and biotic environment, and intraspecific trait vari-
ability can reduce competition among individuals, allowing them to 
harness resources more completely26,27. In some cases, species' mean 
characteristics may capture the majority of functional variation in 
plant communities; for example, when differences among species 
exceed differences among individuals in a particular study area, or 
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when the spatial scale of a study is large27,28. However, intraspecific 
variation within and among plant communities is often substan-
tial and can even exceed interspecific variation28. Yet, incorporat-
ing intraspecific variation into functional or phylogenetic diversity 
metrics is often impractical27.

Here, we present spectral diversity—a biodiversity metric based 
on spectra of electromagnetic radiation reflected from plants—that 
integrates a range of functional differences among individuals and 
species. Specifically, we investigated the extent to which (1) the dis-
similarity of leaf-level spectra captures functional and phylogenetic 
differences among plant species and (2) the spectral diversity of 
plant communities, calculated from leaf-level and remotely sensed 
image spectra, predicts a critical ecosystem function: aboveground 
productivity.

Spectral reflectance profiles are continuous representations 
of the interaction between electromagnetic radiation and matter 
across a range of wavelengths. In the visible part of the spectrum  
(400–700 nm), light is predominantly absorbed by leaf pigments29–31. 
In the near-infrared (700–1,000 nm) and short-wave infrared 
(1,000–2,500 nm) regions, the absorption properties of cellular mol-
ecules (including water), as well as the internal and external struc-
tural characteristics of leaves, such as intercellular spaces, cell-wall 
thickness, waxiness of the cuticle and trichomes29,31,32, influence how 
electromagnetic radiation is scattered and absorbed. At the whole-
plant level, architectural and morphological characteristics, such as 
branching structure, leaf size, leaf clumping and leaf angle distribu-
tion also influence spectral reflectance32. The spectral differences 
among plants thus capture functional differences in chemical, ana-
tomical and morphological traits. It follows that spectral diversity, 
similar to phylogenetic diversity when it is used as a proxy for func-
tional diversity, provides an integrated measure of the variability of 
phenotypes within plant communities.

Our approach of using spectral diversity to predict ecosystem 
function builds on the spectral or optical diversity hypothesis33–35, 
which suggests that species within a plant community occupy 
unique spectral spaces delineated by their chemical, anatomical and 
morphological characteristics. However, rather than using the num-
ber of spectrally distinct units to estimate the number of species or 
other taxonomic groups, our metric of spectral diversity describes 
the extent and filling pattern of the spectral space occupied by a 
plant community and thus its functional complexity. Analogous to 
functional trait space, spectral space is conceptually an n-dimen-
sional hypervolume populated by spectra of species or individual 
plants measured at the leaf level or remotely. We describe the spec-
tral diversity of a plant community based on the distances among 
species or individuals in spectral space. To compare plant commu-
nities, spectral diversity can be calculated based on a dissimilarity 
matrix of species' mean spectra and a community matrix of species 
presence/absence or abundance. Alternatively, spectral diversity can 
be calculated from separate dissimilarity matrices among spectra of 
individuals or remotely sensed image pixels for each community, 
which accounts for intraspecific variation (see Methods).

We collected spectral profiles of 17 species in 35 plots of the Cedar 
Creek biodiversity experiment7,36 by measuring leaf-level reflectance 
with a spectrometer and leaf clip (see Methods and Supplementary 
Fig. 1). In the same plots, we acquired remotely sensed images 
using an imaging spectrometer mounted on an automated tram37,38 
(see Methods)—a form of proximal remote sensing that provides 
information similar to what could be obtained from unmanned 
aerial vehicles. We assessed species functional differences based on 
14 foliar traits linked to resource capture rates (nitrogen, carbon, 
non-structural carbohydrates, hemicellulose, cellulose and lignin 
concentrations, and the content of chlorophyll a and b, β -carotene, 
lutein, neoxanthin, violaxanthin, antheraxanthin and zeaxanthin 
pigments; see Methods, Supplementary Fig. 2 and Supplementary 
Table 1) and determined species phylogenetic distances using the 

molecular phylogeny published in ref. 39 (see Methods). To calculate 
spectral, functional and phylogenetic diversity, we used functional 
trait dispersion qD(TM) (ref. 40), which offers the flexibility to work 
with any dissimilarity matrix and can optionally include a commu-
nity matrix of species abundance weights (see Methods). qD(TM) 
combines three components critical to biodiversity: the number 
of units per community (species, other phylogenetic or functional 
groups, individuals or image pixels, S), the regularity (evenness, 
qE(T)) and dispersion (distance from the community centroid, Mʹ)  
of their distribution in mathematical space40. We calculated qD(TM) 
using species mean distances and a community matrix of pro-
portional biomass per species, and set the Hill number to q =  1 to 
make spectral, functional and phylogenetic diversity comparable 
with effective Shannon diversity—the exponential of the Shannon 
index. Additionally, we compared our results with non-abundance-
weighted qD(TM), using a community matrix of species presence/
absence instead of proportional biomass (see Methods), and with 
functional dispersion (FDis)16—a biodiversity metric that is inde-
pendent of species richness by design. For the imaging spectrometer 
analysis, we calculated spectral diversity based on the dissimilarity 
of 1,000 randomly extracted vegetation pixels per plot without tak-
ing species identity, species richness or abundance into account.

Results
Spectral dissimilarity among species pairs increased with func-
tional dissimilarity (Mantel test (999 replicates), coefficient of cor-
relation (r) =  0.42, P =  0.001). On average, spectral dissimilarity 
among species pairs explained 28% of their distance in functional 
trait space (coefficient of determination (r2) =  0.28, regression 
coefficient (b) =  0.62, t271 =  29.76, P <  0.001; Fig. 1a). We found 
increasing functional dissimilarity with spectral dissimilarity 
among species pairs for all but two focal species (Supplementary 
Fig. 3a and Supplementary Table 2). Spectral dissimilarity among 
species pairs also increased with evolutionary divergence time 
(Mantel test (999 replicates), r =  0.40, P =  0.001), probably because 
functional differences are a consequence of evolved differences. 
Previous studies have found many spectral regions to be phyloge-
netically conserved41,42, and this is also the case for the species in 
our study (see Supplementary Methods and Supplementary Fig. 4). 
On average, spectral dissimilarity among species pairs explained 
20% of their phylogenetic distance (r2 =  0.20, b =  0.62, t271 =  27.72, 
P <  0.001; Fig. 1b). The relationship between spectral dissimilarity 
and phylogenetic distance for individual focal species revealed sup-
port for increasing spectral dissimilarity with phylogenetic distance 
for 13 out of 17 species (Supplementary Fig. 3b and Supplementary 
Table 2). The wavelengths contributing most to spectral dissimilar-
ity among species (centre wavelengths 429, 675, 1,451, 1,981 and 
2,360 nm; see Methods) aligned closely with known absorption fea-
tures for chlorophylls (at 430 and 660 nm), carotenoids (at 430 nm), 
leaf water content (at 1,450 and 1,980 nm), proteins (at 1,980 and 
2,350 nm) and cellulose (at 2,350 nm)30,31,43 (Fig. 2), which are  
all traits associated with resource acquisition and partitioning in 
plant communities.

Spectral diversity of plant communities calculated from leaf-
level spectra explained 51% of the total variation in productivity 
(r2 =  0.51, b =  94.92, t33 =  5.90, P <  0.001; Fig. 3a). More productive 
communities were characterized by a greater number (Pearson's 
product correlation coefficient (r) =  0.72, t33 =  6.04, P <  0.001) of 
more dispersed (r =  0.74, t33 =  6.30, P <  0.001) and less evenly distrib-
uted (r =  –0.40, t33 =  –2.53, P =  0.02) species' mean spectra in spec-
tral space. The dispersion of species' mean spectra predicted slightly 
more (r2 =  0.55, b =  559.36, t33 =  6.30, P <  0.001; Supplementary  
Fig. 5c) of the total variation in productivity than the number of 
species (r2 =  0.53, b =  22.86, t33 =  6.04, P <  0.001; Supplementary  
Fig. 5a), while the evenness of their distribution predicted less 
(r2 =  0.16, b =  –263.19, t33 =  –2.53, P =  0.02; Supplementary Fig. 5b). 
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Spectral diversity, calculated based on the five most variable spec-
tral bands located at the local maxima of the coefficient of varia-
tion, explained as much of the total variation in productivity as 
the full spectral profiles (r2 =  0.51, b =  121.58, t33 =  5.88, P <  0.001; 
Supplementary Fig. 6).

Spectral diversity of plant communities calculated from remotely 
sensed image spectra explained 41% of the total variation in pro-
ductivity (r2 =  0.41, b =  3.81, t25 =  4.14, P < 0.001; Fig. 3b). Again, 
more productive communities were characterized by more dis-
persed spectra (r =  0.61, t25 =  3.86, P <  0.001), while the correlation 
between productivity and the evenness of their distribution was not 
significant (r =  0.30, t25 =  1.55, P =  0.13). The dispersion of image 
pixels in spectral space predicted more of the total variation in pro-
ductivity (r2 =  0.37, b =  3289.9, t25 =  3.86, P <  0.001; Supplementary 
Fig. 7c) than the evenness of their distribution (r2 =  0.09, b =  3,250.0, 
t25 =  1.55, P =  0.13; Supplementary Fig. 7b); the number of spectra 
was constant at 1,000 randomly extracted image pixels per commu-
nity (Supplementary Fig. 7a).

Overall, spectral diversity was as predictive of ecosystem function 
as functional, phylogenetic or taxonomic diversity. Functional diver-
sity explained 51% of the total variation in productivity (r2 =  0.51, 
b =  66.96, t33 =  5.85, P <  0.001; Supplementary Fig. 8a)—the same 
proportion as spectral diversity—phylogenetic diversity explained 
48% (r2 =  0.48, b =  65.95, t33 =  5.50, P <  0.001; Supplementary Fig. 8b) 
and effective Shannon diversity explained 47% (r2 =  0.47, b =  35.80, 
t33 =  5.38, P <  0.001; Supplementary Fig. 8c). Model performance 
ranked similarly (delta Akaike Information Criterion <  3.2) and we 
found no combination of spectral, functional, phylogenetic or effec-
tive Shannon diversity that predicted productivity better than spectral 
diversity alone (Supplementary Table 3). These results were robust to 
the biodiversity metric used; both non-abundance-weighted qD(TM) 
(Supplementary Fig. 9) and FDis (Supplementary Fig. 10) explained 
comparable proportions of the total variation in productivity.

Discussion
Understanding and sustaining the contributions of plant biodi-
versity to ecosystem functions and services to humanity calls for 

 integrative, consistent and scalable approaches to biodiversity 
research. Broad consensus has been reached that functional diver-
sity is critical to ecosystem function5–11 and functional traits have 
a tendency to be phylogenetically conserved19–25. Here, we provide 
evidence that the spectral dissimilarity of plants is coupled with 
their functional and evolutionary divergence, such that spectral 
diversity can be used to predict ecosystem function. Our results 
confirm previous findings that more productive plant communities 
are more functionally and phylogenetically diverse5,6,19,20, but we also 
show that the spectral dissimilarity of plants captures this under-
lying functional variation resulting from contrasting evolutionary 
histories44. The links between spectral, functional and evolution-
ary divergence provide the rationale for using the dissimilarity of 
spectral profiles of plants to estimate biodiversity. Spectral diversity 
predicted the ecosystem consequences of biodiversity in our study 
system with as much or more explanatory power as functional, phy-
logenetic and taxonomic diversity. Moreover, spectral diversity can 
be calculated from remotely sensed image spectra without requiring 
information about species identity, richness or abundance.

The choice of which biodiversity measure is most appropriate for 
a particular study depends on data availability, as well as the goals, 
and spatial and temporal extent of the study. Taxonomic, phyloge-
netic and functional diversity can be readily calculated when spe-
cies identities are known and phylogenetically resolved, or when 
accurate data on the plant traits critical to the ecosystem function 
of interest are available. However, spectral diversity of plant assem-
blages can provide unprecedented information about biodiversity 
and ecosystem function when the taxonomic identities, abundances 
and functional characteristics of plants are difficult to determine. 
Spectral information can be acquired relatively rapidly and consis-
tently compared with measuring suites of functional traits based on 
traditional protocols. For assessing biodiversity repeatedly and over 
large spatial scales, spectral diversity can thus be advantageous, par-
ticularly as it accounts for intraspecific variation when calculated 
from randomly sampled leaf-level or remotely sensed spectra.

Intraspecific variability is increasingly recognized as an important 
contribution to ecosystem function9,26–28. However, there are reasons 
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for using species' mean values over individual measurements in 
biodiversity metrics, including data availability, generalizability or 
under conditions where interspecific variation exceeds intraspecific 
variation. We used species' means for the leaf-level analysis to allow 
comparisons between functional, phylogenetic, taxonomic and 
spectral diversity. Furthermore, we sampled leaf-level reflectance of 
the most abundant species and thus did not have sufficient observa-
tions to incorporate individual variation, which we did when ana-
lysing the remotely sensed image spectra. At the leaf level, results 
for abundance-weighted and non-abundance-weighted versions of 
qD(TM) were consistent (Fig. 3 and Supplementary Figs. 8 and 9).  
It is known from previous analyses, and confirmed by our study, that 
aboveground productivity in the Cedar Creek biodiversity experi-
ment can be well predicted by functional and phylogenic diversity, 
as well as by species richness7,36,45 (Supplementary Fig. 8), because 
the experimental species pool consists of functionally dissimilar 
and distantly related species from different functional groups7. 
However, by decomposing qD(TM) into its three components, we 
show that the dispersion of the species distribution in spectral  
space (Mʹ) alone explains more of the total variation in productiv-
ity than the number of species (S), while the regularity of their dis-
tribution (qE(T)) explains less (Supplementary Fig. 5). This result 
is confirmed by our remote-sensing analysis where the number 
of units (S) in spectral space (pixels per community) is constant 
(Supplementary Fig. 7). In addition, the relationships between bio-
diversity and productivity are similar when using FDis16, which is 
independent of the number of species (Supplementary Fig. 10). 
Combined, these analyses reaffirm that functional differences 
among organisms promote ecosystem function and that these dif-
ferences are associated with the amount and filling pattern of spec-
tral space occupied by plant communities.

Spectral profiles can be considered integrative representations of 
plant phenotypes. It is well documented and supported by our study 
that spectra can accurately predict a range of chemical and morpho-
logical plant traits that are commonly used for determining func-
tional diversity31,43,46,47 (Supplementary Fig. 2 and Supplementary 
Table 1), but they also capture variation that is not traditionally 
measured. Regardless of whether plant traits are measured in situ or 
derived from databases, functional diversity metrics are frequently 

based on a small number of selected traits that are unlikely to fully 
capture the variation contributing to a particular ecosystem function. 
Spectral profiles still do not capture all critical aspects of a plant's 
phenotype and cannot directly account for important functional 
traits of organs that do not interact with light, such as seed mass or 
rooting depth. Nor are plant traits that are measured at the leaf level 
indicative of functional differentiation at the canopy level, such as 
plant height, growth architecture, total leaf area or spatial plant com-
munity composition. However, leaf spectra express many plant traits 
that are important for resource capture and stress tolerance includ-
ing the contents of pigments, nutrients, water and the structure of 
leaves31,43,46–49. Thus, leaf spectra have an advantage over commonly 
measured traits in that they incorporate more of the total variation in 
function associated with leaf chemistry, anatomy and morphology, 
including variation that is difficult to measure or may be of unrec-
ognized importance. Identifying the regions of the spectrum con-
tributing most to spectral diversity provides a means to identify trait 
variation critical to ecosystem function (Fig. 2). While the spectral 
features of many chemical components have been described30,31,43, the 
effects of anatomical and morphological characteristics on spectral 
reflectance are less well understood. Storing spectra in databases can 
enhance herbarium digitization efforts, enabling the investigation of 
changes in plant characteristics over time and allowing specimens to 
be revisited for future discovery of functional attributes critical for 
the structuring of plant communities.

Our analysis of canopy-level images acquired by the mobile 
tram in a manner analogous to measurements made by a low-
flying unmanned aerial vehicle provides initial confirmation that 
remotely sensed spectral diversity of plant communities can predict 
ecosystem function. The spectra extracted from the tram's image 
pixels can be considered remotely sensed canopy measurements at 
leaf-level grain sizes that capture additional optical properties asso-
ciated with varying leaf orientation and illumination in contrast 
with sampling spectra with a leaf clip. We expect the strength of the 
relationship between spectral diversity of plant communities and 
ecosystem function to decline with increasing pixel size as species 
spectra become progressively blended together. We also expect the 
spatial scale of this mixing effect to vary depending on the size of 
the plants in the community38. The imaging spectrometer mounted 
on the tram measured spectral reflectance from the visible region to 
the start of the near-infrared region of the  electromagnetic  spectrum 
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(430–925 nm). We do not yet know the degree to which additional 
information about macromolecules and canopy structure captured 
by wavelengths extending beyond 925 nm would influence this 
result38,50. The spectral and spatial scale dependence of the associa-
tions between spectral diversity and ecosystem function must be 
better understood if we are to design appropriate remote-sensing 
methods for biodiversity detection based on the diversity of plant 
traits. Further experimental work on exactly how leaf-level infor-
mation is translated into image pixels at progressively coarser scales 
for different vegetation types will be important towards this end. As 
these issues are clarified, we anticipate that time series of spectral 
data that capture long-term changes in diversity and plant commu-
nity function, and seasonal changes in plant physiology and phe-
nology, will have the potential to transform our understanding of 
the ecosystem consequences of biodiversity on Earth.

Methods
Experiment. The Cedar Creek biodiversity experiment was planted at the Cedar 
Creek Ecosystem Science Reserve in East Bethel, Minnesota, in the summers 
of 1994 and 19957. Plots measuring 9 m ×  9 m were seeded with 1, 2, 4, 8 or 16 
grassland–savannah perennial species selected from a pool of 18 species: 4 C4  
and 4 C3 grasses, 4 legumes, 4 forb species and 2 tree species7,36.

Spectral data. We collected leaf-level spectral reflectance measurements in 35 plots 
of the Cedar Creek biodiversity experiment, including all planted diversity levels 
from monocultures to 16 species plots, in the summer of 2015. We used a portable 
field spectrometer (SVC HR-1024i; Spectra Vista), covering the wavelength range 
340 to 2,500 nm in 1,024 spectral bands, and a leaf clip with an internal light 
source (LC-RP PRO; Spectra Vista). We visually divided each plot into 9 3 m ×  3 m 
subplots and collected spectral data within a randomly placed 1 m ×  1 m grid in 
4 to 8 subplots, depending on the planted diversity level; the centre subplot was 
always excluded to prevent disturbance (Supplementary Fig. 1). We placed the 
grid at least 50 cm away from the plot edges and measured 4 randomly selected 
individuals of the most abundant species per subplot. When the number of species 
per subplot was fewer than four, we sampled species repeatedly. When the number 
of species per plot was greater than four, we measured all species with more than 
5% cover per plot by alternating the species sampled among subplots. We measured 
the reflectance of either three or five fully mature, healthy leaves per individual, 
depending on plant height. We measured three leaves for individuals under 30 cm 
in height—two from the top and one from the bottom canopy layer—and five 
leaves for individuals over 30 cm in height—two from the top, two from the mid- 
and one from the bottom canopy layer. Spectra were automatically calibrated for 
dark current and stray light, and referenced to the white calibration disc of the 
leaf clip approximately every 10 min. Spectral data processing included correcting 
artefacts at the sensor overlap regions around 900 nm and 1,900 nm (between 
the Si and first InGaAs sensor and between the first and second InGaAs sensor, 
respectively) and resampling to 1 nm spectral resolution. Noisy regions at the 
beginning and end of the spectrum (centre wavelengths smaller than 400 nm or 
greater than 2,400 nm) were excluded from analysis.

Proximal remote-sensing data were collected with an imaging spectrometer 
(E Series; Headwall Photonics) mounted on an automated tram37. Spectral images 
were successfully acquired along the northern edges of 27 of the 35 plots in July 
2014 and 2015 (for details, see ref. 38). The dataset consists of 1,000 ×  1,000 pixel 
images covering the visible region to the beginning of the near-infrared region of 
the electromagnetic spectrum (400–990 nm) in 920 (2014) and 924 (2015) spectral 
bands. Spectra were resampled to 1 nm spectral resolution, and noisy regions at 
the beginning and end of the spectrum (centre wavelengths smaller than 430 nm 
or greater than 925 nm) were excluded from analysis. All spectral processing was 
performed using spectrolab 0.0.251 in R52.

Functional traits. Leaf carbon and nitrogen content, carbon fractions, and 
pigment composition (see Supplementary Fig. 2 and Supplementary Table 1) of 
the same individuals used for leaf-level spectral analyses were predicted using 
partial least squares regression (PLSR) models53 developed from chemical assays 
of leaf-tissue samples and corresponding reflectance spectra. Leaf-tissue samples 
were collected in the summers of 2015 and 2016 at the Cedar Creek Ecosystem 
Science Reserve and included 62 grassland–savannah species. Carbon and 
nitrogen contents (%) of oven-dried (at 65 °C for 48 h) samples were analysed with 
combustion–reduction elemental analysis (TruSpec CN Analyzer; LECO). Carbon 
fractions, including non-structural carbohydrates, hemicellulose, cellulose and 
lignin (%), were determined from oven-dried samples using sequential digestion 
(Fiber Analyzer 200; ANKOM Technology).

The content of chlorophyll a, chlorophyll b, β -carotene, lutein, neoxanthin, 
violaxanthin, antheraxanthin and zeaxanthin pigments (μ mol m–2) was determined 
using high-performance liquid chromatography (HPLC). Fresh leaf-tissue samples 
were cut with a hole punch and stored in liquid nitrogen. For extraction, leaf 

samples were ground in 80% acetone and centrifuged for 2 min at 13,000 r.p.m. 
The supernatant was collected with a syringe and the pellet re-extracted in 100% 
acetone and centrifuged again for 2 min at 13,000 r.p.m. The pooled supernatant 
was then filtered through a 0.45 μ m nylon filter (Millex-HV; Millipore). Our 
HPLC system (Agilent 1200 Series; Agilent Technologies) included a diode array 
detector, quaternary pump and 250 mm ×  4.6 mm octadecyl-silica column with 
5 μ m particle size (Allsphere ODS-1 Column; Grace). Solvent programmes were 
adapted from ref. 54. We injected 20 μ l pigment extract per sample and set the flow 
rate to 2 ml min–1. Solvent A consisted of a mix of acetonitrile:methanol:0.1 M Tris 
pH 8.0 buffer (8:1:1). Solvent B consisted of a mix of methanol:ethyl acetate (68:32). 
Solvent A was run for 12 min followed by a 4 min gradient from solvent A to 
solvent B. Solvent B was run for 2 min followed by a 1 min gradient from solvent  
B to solvent A to reach column equilibrium. Peaks were detected at 445 nm 
and peak-area units were measured using ChemStation Software (Agilent 
Technologies). We calculated pigment concentrations from HPLC peak areas using 
calibration equations developed from HPLC peak-area units of pure pigments 
in dilution series, involving 8 steps for β -carotene, 14 steps for chlorophyll a and 
16 steps for all other pigments, covering the entire expected range of pigment 
concentrations in our samples. Chlorophyll a, chlorophyll b and β -carotene were 
extracted from spinach with thin-layer chromatography55 and re-dissolved in 100% 
acetone. Purified lutein was obtained from Sigma–Aldrich. The concentration 
of the pigment standards in dilution series were determined based on their 
absorbance measured with a UV-Vis spectrophotometer (Cary 50 Bio; Agilent 
Technologies) at 445 nm and corresponding extinction coefficients56–59. Calibration 
equations for neoxanthin, violaxanthin, antheraxanthin and zeaxanthin were 
based on normalized coefficients and lutein area units60. Pigment concentrations 
(ng mg–1) were transformed to moles per unit area and standardized to chlorophyll 
content (μ mol m–2 / total chlorophyll μ mol m–2). Chemical analyses were conducted 
at the University of Minnesota.

For PLSR modelling, we used plsRglm 1.1.161 in R52 with the chemical 
component matrix as the dependent and the leaf spectra matrix as the predictor. 
Spectra were resampled to 20 nm spectral resolution and vector-normalized to 
correct for brightness differences, and wavelength ranges were limited to  
1,100–2,400 nm for carbon and nitrogen, 1,200–2,400 nm for fibre46, and  
400–760 nm for pigment models. We performed 500 tenfold cross-validations 
and used the averaged PLSR coefficients for predictions. The number of PLSR 
components was minimized using the cross-validated predictive-residual-sum-of-
squares (PRESS) criterion. Model performance was assessed based on the coefficient 
of determination (r2) for linear regressions between measured and predicted values 
and the root mean squared error of prediction (RMSEP). For model statistics and 
value ranges, see Supplementary Fig. 2 and Supplementary Table 1.

Spectral, functional and phylogenetic distance. We assessed the association 
between species spectral, functional and phylogenetic distance using spectral, 
functional and phylogenetic dissimilarity matrices. The spectral dissimilarity matrix 
was based on Manhattan distances among species' mean spectra acquired at the 
leaf level. Manhattan distances accommodate the high degree of autocorrelation in 
spectral data. The functional dissimilarity matrix was based on Euclidean distances 
among z-standardized (zero mean, unit variance) species' mean foliar traits (see 
above; Supplementary Fig. 2 and Supplementary Table 1). The phylogenetic 
dissimilarity matrix was based on cophenetic distances calculated from the molecular 
phylogeny published in ref. 39 using the R package ape 3.362. We assessed the overall 
correlation between the dissimilarity matrices with Mantel tests as implemented in 
ade4 1.-763, and fit linear regression models between the distances among all species 
pairs and for each species separately; that is, between each focal species' distance to 
all other species (Fig. 1, Supplementary Fig. 3 and Supplementary Table 2).

Diversity metrics and productivity. We calculated spectral, functional and 
phylogenetic diversity based on qD(TM)40, which uses a dissimilarity matrix and 
a community matrix of species presence/absence or abundance weights as input 
data. Defined as a quantity of distance, qD(TM) calculates the effective number of 
spectrally, functionally or phylogenetically distinct units in a community (which 
can be species, other phylogenetic or functional groups, individuals or image 
pixels) based on the number of units, the regularity (evenness) and dispersion 
of their distribution in mathematical space (see below). This allows spectral, 
functional, phylogenetic and taxonomic diversity to be compared and consistently 
interpreted. Leaf-level spectral diversity and all other biodiversity indices were 
based on species means and initially abundance weighted by proportional biomass 
(Fig. 3a and Supplementary Fig. 8). We set the Hill number in qD(TM) to q =  1 
and calculated Shannon diversity using the R package vegan 2.4-164. To identify 
the bands contributing most to spectral diversity, we calculated the coefficient of 
variation per wavelength across vector-normalized spectra (Fig. 2). We selected 
the bands located at five local maxima of the coefficient of variation to construct 
the spectral dissimilarity matrix and calculate spectral diversity, as described above 
(Supplementary Fig. 6). For comparison, we used species presence/absence data 
instead of proportional biomass to calculate the non-abundance-weighted version of 
qD(TM) for spectral, functional and phylogenetic diversity (Supplementary Fig. 9).  
Additionally, we calculated spectral, functional and phylogenetic diversity based on 
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FDis16, which is by design independent of the number of species (Supplementary 
Fig. 10), using the R package FD 1.0-1265. For the imaging spectrometer analysis, we 
randomly extracted 1,000 vegetation pixels per imaged plot and calculated spectral 
diversity from the spectral dissimilarity matrices of all pixels, without including any 
information about species identity or abundance (Fig. 3b and Supplementary Fig. 7). 
Functional trait dispersion qD(TM) (ref. 40) was calculated as:
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where fij is the proportional distance between distinct units i and j; dij is the 
functional, phylogenetic or spectral distance matrix between units i and j (dij =  dji, 
dii =  0, range =  (0, 1)); S is the number of units (range =  (1, S); units can be species, 
other phylogenetic or functional groups, individuals or image pixels); qH(T) is the 
Hill diversity (q =  Hill number); qD(T) is the effective number of equally distant 
units (range =  (1, S); qE(T) is the regularity (evenness) of the dispersion of units 
in space; Mʹ is the standardized mean dispersion (standardized distance from the 
centroid; range =  (0, 1); M is the mean dispersion among all pairs of units (range =  (0, 
(S −  1)/S); Q is Rao’s quadratic entropy; diag is the diagonal matrix of abundances in 
a community; and comm is the vector of abundances in a community.

Aboveground biomass data (g m–2 dry weight) per species were collected 
between 27 July and 4 August 2015. Observed species richness ranged from 5 
to 20 species per plot. Spectral data were available for the 17 most abundant 
species, which we included in our analyses (for species names, see Fig. 1 and 
Supplementary Table 2). For the imaging spectrometer analysis, we additionally 
used aboveground biomass data (g m–2 dry weight) collected between 26 July 
and 1 August 2014 to match the year of image collection. We used aboveground 
biomass per plot as a measure of aboveground net primary productivity (referred 
to as 'productivity' throughout) and calculated linear regression models between 
productivity and each biodiversity metric. We also calculated multiple linear 
regressions based on all combinations of biodiversity metrics (Supplementary 
Table 3). We used differences in Akaike's information criterion to compare model 
performances and tested whether any diversity metric provided a significant 
parameter addition to a model based on likelihood ratio tests. We assessed 
the separate contribution of the three components of qD(TM) (the number of 
spectrally distinct units (S), the regularity (evenness, qE(T)) and dispersion (Mʹ) 
of their distribution in spectral space) to the spectral diversity–productivity 
relationship based on Pearson's product correlation coefficients (r), and calculated 
linear regression models between each component of spectral diversity and 
productivity (Supplementary Figs. 5 and 7).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The R code for calculating qD(TM) was written by S. Kothari 
and is available at https://github.com/ShanKothari/DecomposingFD.

Data availability. Spectral and biomass data that support the findings of 
this study are available from EcoSIS (https://ecosis.org) and the Cedar Creek 
Ecosystem Science Reserve (http://www.cedarcreek.umn.edu/research/data). 
The tram dataset is available at https://doi.org/10.5067/Community/Headwall/
HWHYPCCMN1MM.001.
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Spectra Vista PC data acquisition software for collecting leaf-level spectra; Headwall Photonics Hyperspec III software for collecting 
imaging spectroscopy data with the mobile tram; Agilent ChemStation software for HPLC data collection.  

Data analysis R version 3.3.2; R packages ape 3.3, vegan 2.4-1, plsRglm 1.1.1, ade4 1.7-4, FD 1.0-12, picante 1.6-2, spectrolab 0.0.2; the R script for 
calculating qD(TM) is available at https://github.com/ShanKothari/DecomposingFD; ENVI 5.2 image processing software for extracting 
reflectance spectra from imaging spectroscopy data; Agilent ChemStation software for analysing HPLC data.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Spectral and biomass data that support the findings of this study (Figs. 1-3; Supplementary Figs. 3-10) are available from EcoSIS (https://ecosis.org) and the Cedar 
Creek Ecosystem Science Reserve (http://www.cedarcreek.umn.edu/research/data). The tram dataset is available from the LP DAAC (doi: 10.5067/Community/
Headwall/HWHYPCCMN1MM.001).

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Reflectance spectra of plants were collected using a portable spectrometer with a leaf clip and an imaging spectrometer mounted on 
an automated tram system, respectively. We tested if more spectrally dissimilar species were more functionally dissimilar and more 
distantly related, and investigated the degree to which the spectral diversity of plant communities predicted aboveground 
productivity, a critical ecosystem function.

Research sample Leaf-level spectra were collected in 35 plots and imaging spectrometry data were collected in 27 plots in the Cedar Creek Biodiversity 
experiment in East Bethel, Minnesota. This subset of plots is annually sampled for aboveground biomass and covers all initially 
planted diversity levels. The experiment was seeded in the summers of 1994 and 1995 with 1, 2, 4, 8 or 16 grassland–savannah 
perennial species selected from a pool of 18 species: 4 C4 and 4 C3 grasses, 4 legumes, 4 forb species and 2 tree species. Plots 
measure 9 m × 9 m. We included the 17 most abundant species in our study: Achillea millefolium L., Agropyron smithii Rydb., 
Amorpha canescens Pursh, Andropogon gerardii Vitman, Asclepias tuberosa L., Koeleria cristata auct. non Pers. p.p., Lespedeza 
capitata Michx., Liatris aspera Michx., Lupinus perennis L., Monarda fistulosa L., Panicum virgatum L., Petalostemum candidum 
(Willd.) Michx., Petalostemum purpureum (Vent.) Rydb., Poa pratensis L., Schizachyrium scoparium (Michx.) Nash, Solidago rigida L. 
and Sorghastrum nutans (L.) Nash. 

Sampling strategy To capture species variability within each plot, we visually divided each plot into nine 3 m x 3 m subplots and measured the most 
abundant species in 4 to 8 subplots per plot (4 subplots for 1 and 2 species plots, 6 subplots for 6 species plots, and 8 subplots for 8 
or 16 species plots). To capture spectral variability within individuals, we took either three or five spectral measurements of different 
leaves per individual depending on plant height, three measurements for individuals < 30 cm and five measurements for individual 
>=30 cm (see Methods).  
The plots sampled with the mobile tram system were the same as for the leaf-level data collection, with the exception of six plots in 
which tram data collection failed due to technical difficulties and two plots were no data were collected because of time and weather 
constraints.

Data collection Leaf-level spectra were collected by A.K.S, Brett Fredericksen and Ian Carriere using a spectrometer covering the wavelength region 
340–2500 nm and a leaf clip. The tram data were collected by R.W. and J.A.G. using an imaging spectrometer covering the 
wavelength region 400–990 nm, mounted on an automated tram system designed by J.A.G. (see Methods).

Timing and spatial scale Leaf-level data were collected between July, 2nd and July, 22nd 2015. Tram data were collected between July, 23rd and July, 30th 
2014 and between July, 8th and July, 26th 2015, respectively. The timing of spectral data collection on the ground matched the 
timing of airborne imaging spectrometer campaigns that are part of the Dimensions of Biodiversity project “Linking remotely sensed 
optical diversity to genetic, phylogenetic and functional diversity to predict ecosystem processes”. 
We collected spectral data at the leaf level and the proximal canopy level (at around 3 m above ground). Aboveground productivity 
was measured and predicted at the plant community scale. 

Data exclusions No data were excluded from the analyses.

Reproducibility Spectral, functional and phylogenetic diversity of plant communities was calculated using three different methods which all provided 
consistent results: 1) abundance-weighted functional trait dispersion qD(TM) (Scheiner, S. M., Kosman, E., Presley, S. J. & Willig, M. 
R., 2016), 2) non-abundance-weighted qD(TM) and 3) functional dispersion FDis (Laliberte & Legendre, 2010). 
Spectra collected with the mobile tram are not a true replicate of spectra collected with a leaf clip. However, the tram data were 
collected in the same research plots as the leaf-level spectra, and albeit the tram measures spectral reflectance at a different scale, 
the total amount of variability in aboveground productivity explained by spectral diversity calculated from the tram data was 
comparable.
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Randomization Species composition of the plots was determined by random draws of 1, 2, 4, 8, or 16 species from a pool of 18 species. 
For the leaf-level sampling, we visually divided each plot into nine 3 m x 3 m subplots and collected spectral data within a randomly 
placed 1 m x 1 m grid in 4 to 8 subplots (see Methods). We measured four randomly selected individuals of the most abundant 
species per subplot. 
For the imaging spectrometer data analysis, we extracted 1,000 vegetation pixels per imaged plot at random. 
To predict foliar chemistry from leaf-level spectra, we calibrated partial least squares regression (PLSR) models for a set of 14 leaf 
traits. Models were tenfold cross-validated 500 times and model coefficients were averaged for predictions (see Methods).

Blinding NA; there were no treatments assigned and data were not grouped.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions All data were collected under dry weather conditions. Tram data were collected under sunny skies. 

Location All data were collected at the Cedar Creek Ecosystem Science Reserve in East Bethel, Minnesota, USA (45.403000, -93.190000).

Access and import/export All sampling efforts were coordinated with Cedar Creek staff. 

Disturbance We did not step into the plots and always set up our equipment outside of the plots. For leaf-level data acquisition, we visually 
divided each plot into nine subplots and collected spectra in four to eight subplots; the centre subplot was always excluded to 
prevent disturbance. 

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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